Fort Bend County, Texas Invitation for Bid

Belknap Road Pavement and Drainage Improvements for Fort Bend County Mobility Bond Project No. 17211 BID 24-017

SUBMIT BIDS TO:

SUBMIT NO LATER THAN:
Tuesday, March 5, 2024
2:00 PM (Central)
Purchasing Department
Travis Annex
301 Jackson, Suite 201
LABEL ENVELOPE:
Richmond, TX 77469
Note: All correspondence must include the term "Purchasing Department" in address to assist in proper delivery

BID 24-017
Belknap Road

ALL BIDS MUST BE RECEIVED IN AND TIME/DATE STAMPED BY THE PURCHASING OFFICE OF FORT BEND COUNTY ON OR BEFORE THE SPECIFIED TIME/DATE STATED ABOVE. BIDS RECEIVED AS REQUIRED WILL THEN BE OPENED AND PUBLICLY READ. BIDS RECEIVED AFTER THE SPECIFIED TIME, WILL BE RETURNED UNOPENED.

Results will not be given by phone. Results will be provided to bidder in writing after Commissioners Court award.

Requests for information must be in writing and directed to:
Brooke Lindemann
Senior Buyer
Brooke.Lindemann@fortbendcountytx.gov

Vendor Responsibilities:

Download and complete any addendums. (Addendums will be posted on the Fort Bend County website no Later than 48 hours prior to bid opening)
$>$ Submit response in accordance with requirements stated on the cover of this document.
DO NOT submit responses via email or fax.

COUNTY PURCHASING AGENT

Fort Bend County, Texas

Vendor Information

Jaime Kovar
Office (281) 341-8640
Purchasing Agent

THIS FORM MUST BE SUBMITTED WITH THE SOLICITATION RESPONSE

1.0 GENERAL REQUIREMENTS:

1.1 Read this entire document carefully. Follow all instructions. You are responsible for fulfilling all requirements and specifications. Be sure you understand them.
1.2 General Requirements apply to all advertised bids; however, these may be superseded, whole or in part, by the scope, special requirements, specifications, special specifications or other data contained herein.
1.3 Governing Law: Bidder is advised that these requirements shall be fully governed by the laws of the State of Texas and that Fort Bend County may request and rely on advice, decisions and opinions of the Attorney General of Texas and the County Attorney concerning any portion of these requirements.
1.4 Bid Form Completion: Fill out, sign, and return to the Fort Bend County Purchasing Department one (1) complete bid form. An authorized representative of the bidder must sign the Contract Sheet. The Contract will be binding only when signed by the County Judge, Fort Bend County and a purchase order authorizing the item(s) desired has been issued. The use of corrective fluid is not acceptable and may result in the disqualification of bid. If an error is made, the bidder must draw a line through error and initial each change.
1.5 Bid Returns: Bidders must return all completed bids to the Fort Bend County Purchasing Department at 301 Jackson, Suite 201 Richmond Texas no later than 2:00 P.M. on the date specified. Late bids will not be accepted. Bids must be submitted in a sealed envelope, addressed as follows: Fort Bend County Purchasing Agent, Travis Annex, 301 Jackson, Suite 201 Richmond, Texas 77469.
1.6 Addenda: No interpretation of the meaning of the drawings, specifications or other bid documents will be made to any bidder orally. All requests for such interpretations must be made in writing addressed to Brooke Lindemann, Senior Buyer, 301, Jackson, Suite 201, Richmond, Texas, 77469, E-mail: Brooke.Lindemann@fortbendcountytx.gov. Any and all interpretations and any supplemental instructions will be in the form of written addenda to the contract documents which will be posted on Fort Bend County's website. Addenda will ONLY be issued by the Fort Bend County Purchasing Agent. It is the sole responsibility of each bidder to insure receipt of any and all addenda. All addenda issued will become part of the contract documents. Bidders must sign and include it in the returned bid package. Deadline for submission of questions and/or clarification is no later than Tuesday, February 27, 2024 at 9:30AM (central) Requests received after the deadline will not be responded to due to the time constraints of this bid process.
1.7 References: All bidders must submit, WITH BID, at least three (3) references from clients for whom a project similar to that specified herein has been
\qquad
successfully accomplished. References must include clients name, contact person and telephone number.
1.8 Bid Bond: All bidders must submit, WITH BID, a cashier's check or certified check for at least five percent (5\%) of the total bid price, payable to the order of Fort Bend County, or a Bid Bond in the same amount issued by a surety, acceptable to Fort Bend County, authorized to do business in the State of Texas, as a guarantee that the Bidder will do the work described herein at the rates stated herein. Unsuccessful bidder's Cashier's Check or Certified Check will be returned only after a written request to do so have been received in the Office of the Fort Bend County Purchasing Agent.
1.9 Material Safety Data Sheets: Under the "Hazardous Communication Act", commonly known as the "Texas Right to Know Act", a bidder must provide to Fort Bend County and using departments, with each delivery, material safety data sheets, which are, applicable to hazardous substances defined in the Act. Bidders are obligated to maintain a current, updated file in the Fort Bend County Purchasing Department. Failure of the bidder to maintain such a file will be cause to reject any bid applying thereto.
1.10 Pricing: Prices for all goods and/or services shall be firm for the duration of this Contract and shall be stated on the bid sheet. Prices shall be all inclusive. No price changes, additions, or subsequent qualifications will be honored during the course of the Contract. All prices must be written in ink or typewritten. If there are any additional charges of any kind, other than those mentioned above, specified or unspecified, bidder MUST indicate the items required and attendant costs or forfeit the right to payment for such items.
1.11 Term Contracts: If the Contract is intended to cover a specific time period, said time will be given in the specifications under scope.
1.12 Recycled Materials: Fort Bend County encourages the use of products made of recycled materials and shall give preference in purchasing to products made of recycled materials if the products meet applicable specifications as to quantity and quality. Fort Bend County will be the sole judge in determining product preference application.
1.13 Evaluation: Evaluation shall be used as a determinant as to which bid items or services are the most efficient and/or most economical for Fort Bend County. It shall be based on all factors which have a bearing on price and performance of the items in the user environment. All bids are subject to tabulation by the Fort Bend County Purchasing Department and recommendation to Fort Bend County Commissioners Court. Compliance with all bid requirements, delivery and needs of the using department are considerations in evaluating bids. Pricing is NOT the only criteria for making a recommendation. The Fort Bend County Purchasing Department reserves the right to contact any bidder, at any time, to clarify, verify or request information with regard to any bid.
\qquad
1.14 Disqualification of Bidder: Upon signing this bid document, a bidder offering to sell supplies, materials, services, or equipment to Fort Bend County certifies that the bidder has not violated the antitrust laws of this state codified in section 15.01, et seq., Business \& Commerce Code, or the federal antitrust laws, and has not communicated directly or indirectly the bid made to any competitor or any other person engaged in such line of business. Any or all bids may be rejected if Fort Bend County believes that collusion exists among the bidders. Bids in which the prices are obviously unbalanced may be rejected. If multiple bids are submitted by a bidder and after the bids are opened, one of the bids is withdrawn, the result will be that all of the bids submitted by that bidder will be withdrawn; however, nothing herein prohibits a vendor from submitting multiple bids for different products or services.
1.15 Awards: Fort Bend County reserves the right to award this Contract on the basis of lowest and best bid in accordance with the laws of the State of Texas, to waive any formality or irregularity, to make awards to more than one bidder, to reject any or all bids. In the event the lowest dollar bidder meeting specifications is not awarded a contract, the bidder may appear before the Commissioners Court and present evidence concerning its responsibility.
1.16 Contract Obligation: Fort Bend County Commissioners Court must award the Contract and the County Judge or other person authorized by the Fort Bend County Commissioners Court must sign the Contract before it becomes binding on Fort Bend County or the bidders. Department heads are not authorized to sign agreements for Fort Bend County. Binding agreements shall remain in effect until all products and/or services covered by this purchase have been satisfactorily delivered and accepted.

2.0 SCOPE:

It is the intent of Fort Bend County to contract with one (1) vendor for all materials, supplies, equipment, tools, services, labor and supervision necessary to complete the Belknap Road Pavement and Drainage Improvements, hereinafter referred to as the "Project," as specified herein.
2.1 Work means the procurement, delivery and proper construction and/or installation of all materials and facilities and associated appurtenances necessary to fulfill the winning bidder's obligations (hereinafter the "Contractor") under the Contract as awarded for the Project specified herein, including the coordination and administration of all services necessary for Contractor, and/or its agents and/or subcontractors, to fulfill Contractor's obligations under the Contract.

3.0 PRE-BID CONFERENCE:

A pre-bid conference will be conducted on Tuesday, February 20, 2024 at 9:30 AM (CST). The pre-bid conference will be held at the Fort Bend County Purchasing Department located in the Initials of Bidder:

Travis Annex at 301 Jackson, Suite 201, Richmond, Texas 77469. All bidders are encouraged to attend.

4.0 LIQUIDATED DAMAGES:

The County and the Contractor recognize the delays, expense, and difficulties involved in proving in a legal or arbitration proceeding the actual loss suffered by the County if the work is not complete on time. Accordingly, instead of requiring any such proof, the County and the Contractor agree that as liquidated damages for delay (but not as a penalty) the Contractor shall pay the County $\$ 1,500.00$ for each day that expires after the time specified herein for completion until the Work is complete, unless contract time has been adjusted by extension of time approved by Commissioner's Court.

The Contractor will be placed on one (1) year probation if liquidated damages are accrued. During the probation period, if the Contractor accrues liquidated damages on another project, they will be disqualified from being awarded any County work for two (2) years.

5.0 COMPLETION TIME \& PAYMENT:

5.1 Fort Bend County shall pay the Contractor in current funds for the Contractor's performance of the Contract the contract sum, as stated herein, after receipt of notice to proceed and a purchase order issued by the Fort Bend County Purchasing Agent.
5.2 Based upon Applications for payment submitted to the County Auditor, Fort Bend County shall make progress payments on account of the contract sum to the Contractor as provided below and elsewhere in the contract documents.
5.2.1 The period covered by each application for payment shall be one calendar month ending on the last day of the month.
5.2.2 Provided a customary, accurate and complete application for payment is received by the County Auditor not later than the 15 th day of a month, Fort Bend County shall make payment of all undisputed amounts to the Contractor not later than the 15th day of the next month. If an application for payment is received by the County Auditor after the application deadline fixed above, payment shall be made by Fort Bend County not later than 30 days after the County Auditor receives the application for payment.
5.2.3 Application for payment shall indicate the percentage of completion of each portion of the Project as of the end of the period covered by the application for payment.
5.2.4 Subject to the provisions of the contract documents, the amount of each progress payment shall be computed as follows:
\qquad
5.2.4.1 Take that portion of the contract sum properly allocable to completed Project less retainage of ten percent (10%).
5.2.4.2 Add that portion of the contract sum properly allocable to materials and equipment delivered and suitably stored at the site for subsequent incorporation in the completed construction (or, if approved by Fort Bend County, suitably stored off the site at a location agreed upon in writing), less retainage of ten percent (10\%).
5.2.4.3 Subtract the aggregate of previous payments made by Fort Bend County.
5.2.4.4 The progress payment amount as determined in above shall be further modified under the following circumstances:

Upon substantial completion of the Project, add a sum sufficient to increase the total payments to one hundred percent (100\%) of the contract sum, less such amounts as Fort Bend County shall determine should be deducted for incomplete work and unsettled claims.
5.2.4.5 Final payment, constituting the entire unpaid undisputed balance of the contract sum, shall be made by Fort Bend County to the Contractor when Fort Bend County and the Contractor agree that the Contract has been fully performed by the Contractor.
5.3 Before the first application for payment, the Contractor shall submit to the Facilities Management and Planning Department a schedule of values allocated to various portions of the work, prepared in such form and supported by such data to substantiate its accuracy as the Facilities Management and Planning Department may require. This schedule, unless objected to by the Facilities Management and Planning Department shall be used as a basis for reviewing the Contractor's application for payment.
5.4 Contractor must provide with each application for payment a contractor's affidavit certifying bills against the Contractor for labor, material and expendable equipment employed in the performance of Contractor have been paid in full prior to acceptance of final payment from Fort Bend County.
5.5 The Contractor will permit Fort Bend County, or any duly authorized agent of Fort Bend County, to inspect and examine the books and records of the Contractor for the purpose of verifying the amount of work performed under the Contract. Fort Bend County's right to inspect survives the termination of the Contract for a period of five years.
\qquad

6.0 LIMIT OF APPROPRIATION:

Prior to the execution of this Contract, Contractor has been advised by County, and Contractor clearly understands and agrees, such understanding and agreement being of the absolute essence to this Contract, that County shall have available only those funds specifically allocated in this Contract to fully discharge any and all liabilities which may be incurred by County in bringing this Project to an absolute conclusion, resulting in a complete, fully furnished, fully equipped and fully usable facility, and that the total of any and all basic construction costs, costs of providing the required services and materials, all fees and compensation of any sort to the Contractor, and any and all costs for any and all things or purposes coming inuring under or out of this Contract, irrespective of the nature thereof, shall not exceed said specifically allocated sum, notwithstanding any word, statement or thing contained in or inferred from the preceding provision of this Contract which might in any light by any person be interpreted to the contrary.

7.0 RIGHT TO ASSURANCE:

Whenever Fort Bend County in good faith has reason to question the Contractor's intent or ability to perform, Fort Bend County may demand that the Contractor give written assurance of its intent to perform and its plan to properly continue performance, including a reasonably detailed timeline. In the event that a demand is made and no assurance is given within five (5) business days, Fort Bend County may treat this failure as an anticipatory repudiation of the Contract.

8.0 PERFORMANCE \& PAYMENT BONDS:

Performance and Payment Bonds: In the event the total accepted bid price exceeds $\$ 25,000$ the Contractor must provide to the Office of the County Purchasing Agent, a performance bond and a payment bond, each in the amount of 100% of the total contract sum within ten (10) calendar days after receipt of notification of bid award. Such bonds shall be executed by a corporate surety duly authorized and admitted to do business in the State of Texas and licensed in the State of Texas to issue surety bonds with a Best Rating of "A" or better. Fort Bend County reserves the right to accept or reject any surety company proposed by the Contractor. In the event Fort Bend County rejects, the proposed surety company, the Contractor will be afforded five (5) additional days to submit the required bonds issued by a surety company acceptable to Fort Bend County.

9.0 POWER OF ATTORNEY:

An attorney-in-fact who signs a bid bond, performance bond or payment bond must file with each bond a certified and effectively dated copy of his or her power of attorney.

10.0 INSURANCE:

10.1 All respondents shall submit, with response, a current certificate of insurance indicating coverage in the amounts stated below. In lieu of submitting a certificate of insurance, respondents may submit, with response, a notarized
\qquad
statement from an Insurance company, authorized to conduct business in the State of Texas, and acceptable to Fort Bend County, guaranteeing the issuance of an insurance policy, with the coverage stated below, to the firm named therein, if successful, upon award of this Contract.
10.2 At contract execution, contractor shall furnish County with properly executed certificates of insurance which shall evidence all insurance required and provide that such insurance shall not be canceled, except on 30 days prior written notice to County. Contractor shall provide certified copies of insurance endorsements and/or policies if requested by County. Contractor shall maintain such insurance coverage from the time Services commence until Services are completed and provide replacement certificates, policies and/or endorsements for any such insurance expiring prior to completion of Services. Contractor shall obtain such insurance written on an Occurrence form (or a Claims Made form for Professional Liability insurance) from such companies having Best's rating of A/VII or better, licensed or approved to transact business in the State of Texas, and shall obtain such insurance of the following types and minimum limits:
10.2.1 Workers' Compensation insurance. Substitutes to genuine Workers' Compensation Insurance will not be allowed.
10.2.2 Employers' Liability insurance with limits of not less than $\$ 1,000,000$ per injury by accident, $\$ 1,000,000$ per injury by disease, and $\$ 1,000,000$ per bodily injury by disease.
10.2.3 Commercial general liability insurance with a limit of not less than $\$ 1,000,000$ each occurrence and $\$ 2,000,000$ in the annual aggregate. Policy shall cover liability for bodily injury, personal injury, and property damage and products/completed operations arising out of the business operations of the policyholder.
10.2.4 Business Automobile Liability coverage with a combined Bodily Injury/Property Damage limit of not less than $\$ 1,000,000$ each accident. The policy shall cover liability arising from the operation of licensed vehicles by policyholder.
10.3 County and the members of Commissioners Court shall be named as additional insured to all required coverage except for Workers' Compensation and Professional Liability (if required). All Liability policies including Workers' Compensation written on behalf of contractor, excluding Professional Liability, shall contain a waiver of subrogation in favor of County and members of Commissioners Court.
10.4 If required coverage is written on a claims-made basis, contractor warrants that any retroactive date applicable to coverage under the policy precedes the effective date of the contract; and that continuous coverage will be maintained or an
\qquad
extended discovery period will be exercised for a period of two (2) years beginning from the time that work under the agreement is completed.
10.5 Contractor shall not commence any portion of the work under this Contract until it has obtained the insurance required herein and certificates of such insurance have been filed with and approved by Fort Bend County.
10.6 No cancellation of or changes to the certificates, or the policies, may be made without sixty (60) days prior, written notification to Fort Bend County.
10.7 Approval of the insurance by Fort Bend County shall not relieve or decrease the liability of the Contractor.

11.0 INDEMNIFICATION:

Respondent shall save harmless County from and against all claims, liability, and expenses, including reasonable attorney's fees, arising from activities of respondent, its agents, servants or employees, performed under this agreement that result from the negligent act, error, or omission of respondent or any of respondent's agents, servants or employees.
11.1 Respondent shall timely report all such matters to Fort Bend County and shall, upon the receipt of any such claim, demand, suit, action, proceeding, lien or judgment, not later than the fifteenth day of each month; provide Fort Bend County with a written report on each such matter, setting forth the status of each matter, the schedule or planned proceedings with respect to each matter and the cooperation or assistance, if any, of Fort Bend County required by Respondent in the defense of each matter.
11.2 Respondent's duty to defend, indemnify and hold Fort Bend County harmless shall be absolute. It shall not abate or end by reason of the expiration or termination of any contract unless otherwise agreed by Fort Bend County in writing. The provisions of this section shall survive the termination of the contract and shall remain in full force and effect with respect to all such matters no matter when they arise.
11.3 In the event of any dispute between the parties as to whether a claim, demand, suit, action, proceeding, lien or judgment appears to have been caused by or appears to have arisen out of or in connection with acts or omissions of Respondent, Respondent shall never-the-less fully defend such claim, demand, suit, action, proceeding, lien or judgment until and unless there is a determination by a court of competent jurisdiction that the acts and omissions of Respondent are not at issue in the matter.
11.4 Respondent's indemnification shall cover, and Respondent agrees to indemnify Fort Bend County, in the event Fort Bend County is found to have been negligent for having selected Respondent to perform the work described in this request.
\qquad
11.5 The provision by Respondent of insurance shall not limit the liability of Respondent under an agreement.
11.6 Respondent shall cause all trade contractors and any other contractor who may have a contract to perform construction or installation work in the area where work will be performed under this request, to agree to indemnify Fort Bend County and to hold it harmless from all claims for bodily injury and property damage that may arise from said Respondent's operations. Such provisions shall be in form satisfactory to Fort Bend County.
11.7 Loss Deduction Clause - Fort Bend County shall be exempt from, and in no way liable for, any sums of money which may represent a deductible in any insurance policy. The payment of deductibles shall be the sole responsibility of Respondent and/or trade contractor providing such insurance.

12.0 PREVAILING WAGES:

This project is subject to the prevailing wage rate requirements of Chapter 2258 of the Government Code. All persons employed by Contractor shall be compensated at not less than the rates shown below. Contractor shall keep detailed records of each of its workers and said records shall be made available to County for inspection at all reasonable times. The Contractor shall pay Fort Bend County sixty dollars (\$60.00) for each worker employed by the Contractor for the provision of services described herein for each calendar day or part of the day that the worker is paid less than the below stated rates. Contractors may also visit www.wdol.gov/dba.aspx.

General Decision Number: TX20240038 01/05/2024
Superseded General Decision Number: TX20230038
State: Texas
Construction Type: Highway
Counties: Austin, Brazoria, Chambers, Fort Bend, Galveston, Hardin, Harris, Jefferson, Liberty, Montgomery, Orange, San Jacinto and Waller Counties in Texas.

HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects \& railroad construction; bascule, suspension \& spandrel arch bridges designed for commercial navigation, bridges involving marine construction; and other major bridges).

Note: Contracts subject to the Davis-Bacon Act are generally required to pay at least the applicable minimum wage rate required under Executive Order 14026 or Executive Order 13658. Please note that these Executive Orders apply to covered contracts entered into by the federal government that are subject to the Davis-Bacon Act itself, but do not apply to contracts subject only to the Davis-Bacon Related Acts, including those set forth at 29 CFR 5.1(a)(2)-(60).
If the contract is entered into on or after January 30, 2022, or the contract is renewed or extended (e.g., an option is exercised) on or after January 30, 2022, Executive Order 14026 generally
\qquad
applies to the contract. The contractor must pay all covered workers at least $\$ 17.20$ per hour (or the applicable wage rate listed on this wage determination, if it is higher) for all hours spent performing on that contract in 2024.

If the contract was awarded on or between January 1, 2015 and January 29, 2022, and the contract is not renewed or extended on or after January 30, 2022, Executive Order 13658 generally applies to the contract. The contractor must pay all covered workers at least $\$ 12.90$ per hour (or the applicable wage rate listed on this wage determination, if it is higher) for all hours spent performing on that contract in 2024.

The applicable Executive Order minimum wage rate will be adjusted annually. If this contract is covered by one of the Executive Orders and a classification considered necessary for performance of work on the contract does not appear on this wage determination, the contractor must still submit a conformance request.

Additional information on contractor requirements and worker protections under the Executive Orders is available at www.dol.gov/whd/govcontracts.

Modification Number	Publication Date
0	$01 / 05 / 2024$

SUTX2011-013 08/10/2011

	Rates Fringes
CEMENT MASON/CONCRETE FINISHER (Paving and	
Structures)	$\$ 12.98^{* *}$
ELECTRICIAN	$\$ 27.11$
FORM BUILDER/FORM SETTER	$\$ 12.34 * *$
\quad Paving \& Curb	$\$ 12.23 * *$
Structures	
LABORER	$\$ 12.36 * *$
\quad Asphalt Raker	$\$ 10.33 * *$
Flagger	$\$ 11.02 * *$
Laborer, Common	$\$ 12.12 * *$
Laborer, Utility	$\$ 11.67 * *$
Pipelayer	$\$ 18.62$
Work Zone Barricade Servicer	
PAINTER (Structures)	$\$ 14.06 * *$
POWER EQUIPMENT OPERATOR:	Initials of Bidder:
Asphalt Distributor	

Asphalt Paving Machine	\$ 14.32 **
Broom or Sweeper	\$ 12.68 **
Concrete Pavement Finishing Machine	\$ 13.07 **
Concrete Paving, Curing, Float, Texturing Machine	\$ 11.71 **
Concrete Saw	\$ $13.99^{* *}$
Crane, Hydraulic 80 Tons or less	\$ 13.86 **
Crane, Lattice boom 80 tons or less	\$ 14.97 **
Crane, Lattice boom over 80 Tons	\$ 15.80 **
Crawler Tractor	\$ 13.68 **
Excavator, 50,000 pounds or less	\$ 12.71 **
Excavator, Over 50,000 pounds	\$ 14.53 **
Foundation Drill, Crawler Mounted	\$ 17.43
Foundation Drill, Truck Mounted	\$ 15.89 **
Front End Loader 3 CY or Less	\$ 13.32 **
Front End Loader, Over 3 CY	\$ 13.17 **
Loader/Backhoe	\$ 14.29**
Mechanic	\$ 16.96 **
Milling Machine	\$ 13.53 **
Motor Grader, Fine Grade	\$ 15.69 **
Motor Grader, Rough	\$ 14.23 **
Off Road Hauler	\$ 14.60 **
Pavement Marking Machine	\$ 11.18 **
Piledriver	\$ 14.95 **
Roller, Asphalt	\$ 11.95 **
Roller, Other	\$ 11.57 **
Scraper	\$ 13.47 **
Spreader Box	\$ 13.58 **
Servicer	\$ $13.97^{* *}$
Steel Worker	
Reinforcing Steel	\$ $15.15 * *$
Structural Steel Welder	\$ 12.85 **
Structural Steel	\$ 14.39**
RUCK DRIVER	
Low Boy Float	\$ 16.03 **
Single Axle	\$ 11.46 **
Single or Tandem Axle Dump	\$ 11.48 **
Tandem Axle Tractor w/Semi Trailer	\$ 12.27 **

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.
** Workers in this classification may be entitled to a higher minimum wage under Executive Order 14026 ($\$ 17.20$) or 13658 (\$12.90). Please see the Note at the top of the wage
\qquad
determination for more information. Please also note that the minimum wage requirements of Executive Order 14026 are not currently being enforced as to any contract or subcontract to which the states of Texas, Louisiana, or Mississippi, including their agencies, are a party.

Note: Executive Order (EO) 13706, Establishing Paid Sick Leave for Federal Contractors applies to all contracts subject to the Davis-Bacon Act for which the contract is awarded (and any solicitation was issued) on or after January 1, 2017. If this contract is covered by the EO, the contractor must provide employees with 1 hour of paid sick leave for every 30 hours they work, up to 56 hours of paid sick leave each year. Employees must be permitted to use paid sick leave for their own illness, injury or other health-related needs, including preventive care; to assist a family member (or person who is like family to the employee) who is ill, injured, or has other health-related needs, including preventive care; or for reasons resulting from, or to assist a family member (or person who is like family to the employee) who is a victim of, domestic violence, sexual assault, or stalking. Additional information on contractor requirements and worker protections under the EO is available at www.dol.gov/whd/govcontracts.

Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29CFR 5.5 (a) (1) (iii)).

The body of each wage determination lists the classification and wage rates that have been found to be prevailing for the cited type(s) of construction in the area covered by the wage determination. The classifications are listed in alphabetical order of "identifiers" that indicate whether the particular rate is a union rate (current union negotiated rate for local), a survey rate (weighted average rate) or a union average rate (weighted union average rate).

Union Rate Identifiers

A four letter classification abbreviation identifier enclosed in dotted lines beginning with characters other than "SU" or "UAVG" denotes that the union classification and rate were prevailing for that classification in the survey. Example: PLUM0198-005 07/01/2014. PLUM is an abbreviation identifier of the union which prevailed in the survey for this classification, which in this example would be Plumbers. 0198 indicates the local union number or district council number where applicable, i.e., Plumbers Local 0198. The next number, 005 in the example, is an internal number used in processing the wage determination. 07/01/2014 is the effective date of the most current negotiated rate, which in this example is July 1, 2014.

Union prevailing wage rates are updated to reflect all rate changes in the collective bargaining agreement (CBA) governing this classification and rate.

Survey Rate Identifiers

Classifications listed under the "SU" identifier indicate that no one rate prevailed for this classification in the survey and the published rate is derived by computing a weighted average rate based on all the rates reported in the survey for that classification. As this weighted average rate includes all rates reported in the survey, it may include both union and non-union rates.
\qquad

Example: SULA2012-007 5/13/2014. SU indicates the rates are survey rates based on a weighted average calculation of rates and are not majority rates. LA indicates the State of Louisiana. 2012 is the year of survey on which these classifications and rates are based. The next number, 007 in the example, is an internal number used in producing the wage determination. 5/13/2014 indicates the survey completion date for the classifications and rates under that identifier.

Survey wage rates are not updated and remain in effect until a new survey is conducted.

Union Average Rate Identifiers

Classification(s) listed under the UAVG identifier indicate that no single majority rate prevailed for those classifications; however, 100% of the data reported for the classifications was union data. EXAMPLE: UAVG-OH-0010 08/29/2014. UAVG indicates that the rate is a weighted union average rate. OH indicates the state. The next number, 0010 in the example, is an internal number used in producing the wage determination. 08/29/2014 indicates the survey completion date for the classifications and rates under that identifier.

A UAVG rate will be updated once a year, usually in January of each year, to reflect a weighted average of the current negotiated/CBA rate of the union locals from which the rate is based.

WAGE DETERMINATION APPEALS PROCESS

1.) Has there been an initial decision in the matter? This can be:

* an existing published wage determination
* a survey underlying a wage determination
* a Wage and Hour Division letter setting forth a position on a wage determination matter
* a conformance (additional classification and rate) ruling

On survey related matters, initial contact, including requests for summaries of surveys, should be with the Wage and Hour Regional Office for the area in which the survey was conducted because those Regional Offices have responsibility for the Davis-Bacon survey program. If the response from this initial contact is not satisfactory, then the process described in 2.) and 3.) should be followed.

With regard to any other matter not yet ripe for the formal process described here, initial contact should be with the Branch of Construction Wage Determinations. Write to:

Branch of Construction Wage Determinations
Wage and Hour Division
U.S. Department of Labor
200 Constitution Avenue, N.W.
Washington, DC 20210

\qquad
2.) If the answer to the question in 1.) is yes, then an interested party (those affected by the action) can request review and reconsideration from the Wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Write to:

Wage and Hour Administrator
U.S. Department of Labor
200 Constitution Avenue, N.W.
Washington, DC 20210

The request should be accompanied by a full statement of the interested party's position and by any information (wage payment data, project description, area practice material, etc.) that the requestor considers relevant to the issue.
3.) If the decision of the Administrator is not favorable, an interested party may appeal directly to the Administrative Review Board (formerly the Wage Appeals Board). Write to:

Administrative Review Board
U.S. Department of Labor

200 Constitution Avenue, N.W.
Washington, DC 20210
4.) All decisions by the Administrative Review Board are final.

13.0 PERMITS:

It shall be the sole responsibility of the successful bidder to obtain all required permits in the name of Fort Bend County.

14.0 CONTRACTOR'S RESPONSIBILITY FOR WORK:

14.1 Preconstruction Work. Contractor shall do (or cause to be done) the following as preconstruction work:
14.1.1 On written demand as requested by Fort Bend County, cause the Contractor's personnel to meet with Fort Bend County and the Engineer to discuss the status of the Project.
14.1.2 On written demand as requested by Fort Bend County, review drawings and specifications with the Engineer to permit the Contractor and the Engineer to determine the compliance of the proposed facility with applicable building codes.
14.2 Construction Work. Contractor shall do (or cause to be done) the following as construction work:
14.2.1 Perform (or cause to be performed) all preparatory work at the construction site required herein, including (without limitation) soil and
\qquad
concrete testing and demolition of improvements existing at the construction site and all actions necessary for compliance with all laws and regulations as to actions to be taken by owners or contractors before construction begins, including without limitation those in regard to archaeological and environmental requirements.
14.2.2 Construct and install (or cause to be constructed and installed) the Project on the construction site in accordance with this Contract and the drawings and specifications approved by Fort Bend County.
14.2.3 Furnish (or cause to be furnished) all materials, supplies, equipment, tools, labor, supervision, utilities, transportation, and other materials and services necessary to complete the Project described herein.
14.2.4 Materials testing necessary for the Project and required by laws and regulations, construction industry standards as approved by Fort Bend County and this Contract; the frequency of testing shall be approved by Fort Bend County. It is the contractor's responsibility to engage a material testing laboratory to perform testing on the structural concrete to be used for foundation work in this project. The cost of testing shall be incidental to bid item for drill shaft foundation. Testing of concrete shall comply with current TXDOT criteria. Contractor has to submit the name of the testing laboratory, intended to be used by the contractor for this project, for County's approval.
14.3 Standards for Review and Approval. Fort Bend County acknowledges that in order to meet the deadlines for the completion of the Project, and in order to accomplish the efficient completion of the Project, the Contractor may submit matters to Fort Bend County in stages for approval or consent. Upon receipt of any matter submitted by the Contractor for review and approval, Fort Bend County shall review the same and shall diligently and promptly (but in any event within 14 calendar days for any such matter, other than a proposed change order, and within 28 calendar days for a proposed change order) give the Contractor notice of Fort Bend County's approval or disapproval, setting forth in detail all reasons for any disapproval. Fort Bend County's right to disapprove any such matter submitted (other than a proposed change order) shall be limited to the elements thereof (a) which do not conform substantially to matters previously approved, (b) which are new elements not previously presented and approved and the Contractor is unable to demonstrate that such new element is reasonably necessary for completion of the Project, or (c) which depict matters that are violations of this Contract or applicable laws and regulations.
14.3.1 If Fort Bend County disapproves of a particular matter or Proposed Change Order, the Contractor shall have the right to resubmit such matter or Proposed Change Order to Fort Bend County, altered to satisfy Fort Bend County's basis for disapproval. Any resubmission shall be subject to review and approval by Fort Bend County.
\qquad
14.3.2 Fort Bend County and the Contractor shall attempt in good faith to resolve any disputes concerning the approval of any aspect of the Project expeditiously, so as not to delay the completion of the Project in accordance with this Contract.
14.3.3 Expedited Approvals. Fort Bend County recognizes the importance of expeditious action upon all matters submitted to Fort Bend County for review and approval and of expeditious response to those aspects of the Project requiring approval by governmental authorities having jurisdiction there over. Fort Bend County agrees to exercise its rights of review and approval hereunder with due diligence, reasonableness, and good faith. Fort Bend County shall use its reasonable efforts to expedite any required review of the Project or other matters by any governmental authority.
14.4 Changes.
14.4.1 General. Fort Bend County may make changes to the Project by altering, adding to, or deducting from the Project. All changes in the Project which (a) require an adjustment in the contract sum or an adjustment in the final completion date or (b) involve a material change in the overall scope or function of the Project shall be requested and authorized before commencing such changes by use of written change order notices, Proposed Change Orders and Change Orders, which change order procedure shall be the exclusive means to effect such changes in the Project.
14.4.2 Change Order Procedure. If at any time Fort Bend County desires to make any change in the Project requiring the issuance of a Change Order, Fort Bend County shall so advise the Contractor in writing by delivery to the Contractor of a written notice describing the change. Upon receipt of such notice initiated by Fort Bend County, the Contractor shall within a reasonable period of time advise Fort Bend County of the Contractor's proposal for the adjustments, if any, in the contract sum, the schedule of values, and the final completion date attributable to such change by delivering a written notice thereof (the "Proposed Change Order") to Fort Bend County. Such Proposed Change Order shall contain a description of the proposed change and shall set forth the Contractor's estimate of the increase or decrease, if any, in the contract sum and the change, if any, in the schedule of values and the final completion date attributable to such change. If the Contractor desires to make a change in the Project requiring the issuance of a change order, the Contractor shall deliver to Fort Bend County a Proposed Change Order. Upon execution by Fort Bend County, a Proposed Change Order shall constitute (and be defined herein as) a "Change Order" for purposes of this Contract. The Contractor shall forthwith perform the work as changed in accordance with such Change Order. All work performed pursuant to a Change Order shall be performed in accordance with the terms of this Contract. All Proposed Change Orders

Initials of Bidder:
shall be submitted for approval by Fort Bend County. No action, acquiescence or inaction by Fort Bend County or any representative of Fort Bend County shall be construed to be a waiver of requirements set forth in this Contract in regard to Change Orders or ratification of a violation of such requirements, and all acts in violation of this provision shall be considered void.
14.4.3 Change Order Authorization. Each Change Order shall be signed by Fort Bend County and an authorized representative of the Contractor.
14.4.4 Contract Sum Adjustments. The contract sum and the schedule of values shall be adjusted only as a result of a Change Order requiring such adjustment. Any extra work performed without a proper Change Order shall be considered voluntary and not subject to additional compensation. The Contractor shall not be entitled to an adjustment in the contract sum (or a Change Order permitting such adjustment) or to damages as a result of any delays in the Project caused by the acts or omissions of Fort Bend County, provided that this sentence is not applicable to delays that constitute more than 90 days in any 365 -day period or cause the Project to be interrupted for a continuous period of 45 days through no fault of the Contractor.
14.4.5 When Fort Bend County and the Contractor agree upon the adjustments in the contract sum, the schedule of values, and the final completion date attributable to such adjustment, such agreement will be documented by preparation and if approved by the Fort Bend County Commissioners Court, execution of an appropriate Change Order.
14.5 Site Access. Prior to the transfer date, Fort Bend County and the Contractor shall have uninterrupted access to the construction site. Subsequent to the transfer date, Fort Bend County will permit the Contractor, the Engineer, and their representatives and subcontractors to enter upon the Project at times reasonably necessary to complete the punch list items.
14.6 Applicable Laws and Regulations. Contractor shall in its performance of the Project comply with all applicable laws and regulations. Any delays in the prosecution of the Project caused by any changes in the laws and regulations or the application or enforcement of the laws and regulations may entitle the Contractor to an extension of time.
14.7 Familiarity with Project. The Contractor represents and accepts that it has: (a) visited the property(ies), (b) taken such other steps as may be necessary to ascertain the nature and location of the Project and the general and local conditions which affect the Project or the cost thereof, (c) investigated the labor situation as regards to the Project, (d) examined the property(ies), the obstacles which may be encountered and all other observable conditions having a bearing upon the performance of the Project, the superintendence of the Project, the time of completion and all other relevant matters, and (e) reported to Fort Bend County
the results of all of the foregoing. The Contractor represents that it is familiar with all phases of the Project and the matters that may affect the Project or its prosecution under this Contract.
14.8 Standard of Performance. The Contractor shall prosecute (or cause to be prosecuted) the Project in accordance with the best efforts for the construction and development of projects similar to the Project in the State of Texas, using qualified, careful, and efficient contractors and workers and in conformity with the provisions of this Contract. The Contractor shall perform the work in a good and workmanlike manner.
14.9 Warranty of Contractor. The Contractor warrants to Fort Bend County that: (i) the Contractor possesses the skill and knowledge ordinarily possessed by wellinformed members of its trade or profession and the Contractor will use its best efforts to ensure that the services provided under this Contract will be performed, delivered, and conducted in accordance with the best professional standards and in accordance with industry standards, and (ii) the Contractor is fully experienced and properly qualified to perform the class of work provided for herein, and that it is properly equipped, organized and financed to perform such work, and (iii) following the date of acceptance of this Contract, the services provided by the Contractor to Fort Bend County will conform to the representations contained in this Contract, including all attachments, schedules and exhibits. All warranties provided by the Contractor in this Contract shall be cumulative, shall be deemed consistent and not in conflict, are intended to be given full force and effect and to be interpreted expansively to give the broadest warranty protection to Fort Bend County.
14.10 Contractor's Personnel. Contractor shall employ only competent, skilled personnel for the Project. Prior to the final completion date, the Contractor shall maintain a superintendent who shall be authorized to act on behalf of the Contractor and with whom Fort Bend County may consult at all reasonable times. The superintendent shall not be transferred from the Project without Fort Bend County's consent (which shall not be unreasonably withheld or delayed); provided, however, the superintendent shall not be assigned solely to the Project and shall be entitled to spend reasonable time working on matters unrelated to the Project so long as such work on other matters does not render the superintendent unavailable to the Project or unavailable to Fort Bend County. However, such obligation to furnish the superintendent and such staff personnel shall not be construed (a) to preclude the promotion within the Contractor's organization of any person assigned to the Project or (b) to give rise to any liability of the Contractor if any person assigned to the Project (including, without limitation, the superintendent) leaves the Contractor's employment. If the superintendent is transferred from the Project, Fort Bend County shall have the right to approve the replacement superintendent (which approval will not be unreasonably withheld or delayed). The Contractor, the Architect, and the other subcontractors shall comply with all applicable health, safety, and loss prevention rules of applicable governmental authorities. The
\qquad

Contractor shall, at its own expense, remove from the Project any person who fails to comply with such rules and instructions. The Contractor shall at all times enforce strict discipline and good order among its employees and shall not employ on the Project any unfit person or anyone not skilled in the work assigned to him. Fort Bend County may, upon written notice to the Contractor, require the Contractor to remove an individual immediately from providing services for the following reasons: violation of the terms and conditions of this Contract; violation of Fort Bend County's or the Contractor's work rules and regulations; criminal activity; or violation of state, federal, or municipal statutes. Fort Bend County may, upon thirty (30) days written notice to the Contractor, require the removal of any individual from providing services without cause.
14.11 Inspection. The Project and all parts thereof shall be subject to inspection from time to time by inspectors designated by Fort Bend County. No such inspections shall relieve The Contractor of any of its obligations hereunder. Neither failure to inspect nor failure to discover or reject any of the work as not in accordance with the drawings and specifications or any provision of this Contract shall be construed to imply an acceptance of such work or to relieve the Contractor of any of its obligations hereunder. Fort Bend County agrees that its right of inspection shall be used reasonably and in a timely manner so as not to delay orderly completion of the Project.
14.12 Protection Against Risks. The Contractor shall take all precautions which are necessary and adequate, against conditions created during the progress of the Project which involve a risk of bodily harm to persons or a risk of damage or loss to any property. The Contractor shall regularly inspect all work, materials and equipment to discover and determine any such conditions and shall be responsible for discovery, determination, and correction of any such conditions. The Contractor shall comply with all federal, state, and local occupational hazard and safety standards, codes and regulations applicable in the jurisdiction where the Project is being performed. The Contractor shall include the substance of this clause in its entirety in all subcontracts for any work to be performed at the construction site.
14.13 Equipment. Except as expressly provided herein to the contrary, the Contractor shall furnish (or cause to be furnished) all construction, transportation, installation, tools, and other equipment and facilities required for the performance of the Project within the times specified herein. Such equipment and facilities shall be serviceable and kept fit for the uses intended. Defective items shall be removed from the construction site promptly and at the Contractor's cost. The Contractor shall schedule (or cause to be scheduled) its other operations so as to not interfere with its duty to timely furnish the necessary equipment and facilities and personnel to operate the same at the times necessary for the orderly completion of the Project.
14.14 Materials. Except as may be specifically provided otherwise in the Contract or approved in advance by Fort Bend County, the Contractor shall provide Fort Bend County with copies of material testing reports and to cause all materials, equipment, and fabricated items incorporated in the Project to be new and of a suitable grade of their respective kinds for their intended use.
14.15 Delay, Disruption or Hindrance Damages. Contractor and the County contemplate that Contractor's performance may be delayed, disrupted or interfered with by unanticipated causes including but not limited to the following:
a) Severe and unavoidable natural disasters such as fires, floods, epidemics and earthquakes;
b) Abnormal weather conditions;
c) Acts or failures to act of the County , third party utility owners or other third party entities; and
d) Acts of war or terrorism.

Contractor and the County agree and stipulate that an extension of the Contract Time shall be the sole remedy of Contractor for delays in performance of the Work, whether or not such delays are foreseeable, except for delays caused solely by acts of the County that constitute fraud, intentional misrepresentation, gross negligence, intentional arbitrary or capricious acts and/or omissions or intentional interference with Contractor's performance of the Work and then only to the extent such acts continue after Contractor notifies Owner in writing of such conduct. For delays caused by any act(s) other than fraud, intentional misrepresentation, gross negligence, intentional arbitrary or capricious acts and/or omissions or intentional interference with Contractor's performance of the Work Contractor shall not be entitled to any compensation or recovery of any damages including, without limitation, those damages prohibited or limited in Sections 14.15.1-14.15.8 below. The County's exercise of any of its rights or remedies under the Contract including, without limitation, ordering changes in the Work or directing suspension, rescheduling, or correction of the Work, in response to any breach or failure by the Contractor to comply with the terms of the Contract Documents or the Contractor's obligations arising therefrom, shall not be construed as intentional interference with Contractor's performance of the Work regardless of the extent or frequency of the County's exercise of such rights or remedies.

Without limiting the foregoing, except as otherwise expressly provided in this
Agreement in calculating the amount of any claim recoverable by
Contractor, the following limitations on the recovery of damages shall apply:
14.15.1 No indirect or consequential damages will be allowed.
14.15.2 No recovery shall be based on a comparison of planned expenditures to
\qquad
total actual expenditures, or on estimated losses of labor efficiency, or on a comparison of planned manloading to actual manloading, or any other analysis that is used to show damages indirectly.
14.15.3 Damages, to the extent recoverable, are limited to the additional, actual costs specifically shown to have been directly incurred by the Contractor and solely caused by the proven wrong.
14.15.4 No damages will be allowed for home office overhead or other home office charges.
14.15.5 No exemplary damages or unjust enrichment damages shall be recoverable.
14.15.6 No recovery of attorney's fees shall be recoverable except as expressly permitted under the Agreement.
14.15.7 No profit will be allowed on any damage claim, except as expressly recoverable under the Agreement as Fee on Cost of the Work incurred.
14.15.8 Notwithstanding any other damage limitation herein the County and the Contractor recognize the delays, expense, and difficulties involved in proving in a legal or arbitration proceeding the actual loss suffered by the Contractor if the County is found to have intentionally interfered with Contractor's performance of the Work by fraud, misrepresentation, gross negligence, or intentional arbitrary or capricious acts and/or omissions. Accordingly, instead of requiring any such proof, the County and the Contractor agree that as liquidated damages (in lieu of any other remedy or damages) for delay, disruption or hindrance (but not as a penalty) the County shall pay the Contractor $\$ 1,500.00$ for each day that a court of competent jurisdiction finds the County's conduct referenced in Section14.15 (above) is the sole cause of Contractor's delay in completing the Work.

15.0 TERMINATION:

15.1 Fort Bend County may terminate the Contract for cause if the Contractor:
15.1.1 Persistently or repeatedly refuses or fails to supply enough properly skilled workers or proper materials.
15.1.2 Fails to make payment to Subcontractors for materials or labor in accordance with the respective agreements between the Contractor and the Subcontractor.
\qquad
15.1.3 Persistently disregards laws, ordinances, or rules, regulations or orders of a public authority having jurisdiction.
15.1.4 Otherwise commits substantial breach of a provision of the Contract Documents.
15.2 When any of the above reasons exists, Fort Bend County may, without prejudice to any other rights or remedies of Fort Bend County and after giving the Contractor and the Contractor's surety, if any, seven days' written notice, terminate employment of the Contractor and may, subject to any prior rights of the surety:
15.2.1 Take possession of the site and of all materials, equipment, tools, and construction equipment and machinery thereon owned by the Contractor.
15.2.2 Finish the Project by whatever reasonable method Fort Bend County may deem expedient.
15.2.3 When Fort Bend County terminates the Contract for one of the reasons stated in this section, the Contractor shall not be entitled to receive further payment until the Project is finished. Therefore, the Contractor shall be promptly paid for all work actually and satisfactorily completed.

15.3 Termination for Convenience of Fort Bend County

Fort Bend County reserves the right, without breach, to terminate the Contract prior to, or during the performance of the Work, for any reason. Upon such an occurrence, the following shall apply.
15.3.1 The County will notify Contractor in writing of the county's determination to terminate the contract for convenience and the effective date of the Contract termination. The notice may also contain instructions necessary for the protection, storage or decommissioning of incomplete work or systems, and for safety.
15.3.2 Upon receipt of the notice of termination, Contractor shall immediately proceed with the following obligations, regardless of any dispute in determining or adjusting any amounts due at that point in the Contract:
15.3.2.1 Stop all work.
15.3.2.2 Place no further subcontracts or orders for materials or services.
15.3.2.3 Terminate all subcontracts for convenience.
15.3.2.4 Cancel all materials and equipment orders as applicable.
\qquad
15.3.2.5 Take appropriate action that is necessary to protect and preserve all property related to the Contract which is in the possession of Contractor.
15.3.2.6 When the Contract is terminated for Owner's convenience, Contractor may recover from Owner payment for all Work executed. Contractor may not claim lost profits or lost business opportunities.
15.4 Settlement on Termination. When the Contract is terminated by the County under 15.3, at any time prior to one hundred eighty (180) days after the effective date of termination, Contractor shall submit a final termination settlement proposal to the County based upon recoverable costs as provided under the Contract. If Contractor fails to submit the proposal within the time allowed, the County may unilaterally determine the amount due to Contractor because of the termination and pay the determined amount to Contractor.

16.0 COMPLETION, TRANSFER, \& ACCEPTANCE:

16.1 Final Completion. Upon the occurrence of the final completion date, the punch list items shall be promptly commenced and thereafter completed within thirty (30) days after final completion.
16.2 Transfer and Acceptance. Upon the occurrence of final completion, care, custody and control of the Project shall pass to Fort Bend County. As referenced herein, the "Transfer Date" shall mean the date on which the care, custody and control of the Project passes to Fort Bend County. Subsequent to the Transfer Date all risk of loss with respect to the Project shall be by Fort Bend County and the Contractor shall be thereafter obligated to cover the Project with their Insurance.

17.0 SUSPENSION BY FORT BEND COUNTY FOR CONVENIENCE:

17.1 Fort Bend County may, without cause, order the Contractor in writing to suspend, delay or interrupt the Project in whole or in part for such period of time as Fort Bend County may determine.
17.2 An adjustment shall be made for increase in the cost of performance, caused by suspension, delay or interruption. No adjustment shall be made to the extent:
17.2.1 That performance is, was or would have been so suspended, delayed or interrupted by another cause for which the Contractor is responsible.
17.2.2 That an equitable adjustment is made or denied under another provision of this Contract.
\qquad
17.3 Adjustments made in the cost of performance may have a mutually agreed fixed or percentage fee.

18.0 INDEPENDENT CONTRACTOR:

The Contractor shall be an independent contractor and any provisions of this Contract that may appear to give Fort Bend County the right to direct the Contractor as to the details of the manner of doing the Project shall be deemed to mean that the Contractor shall follow the desires of Fort Bend County in the results of the Project only and not in the means whereby the Project is to be accomplished. The Contractor shall be responsible as to the details of completing the Project. Neither the agents, representatives, nor employees of the Contractor, shall be deemed to be the agents, representatives, or employees of Fort Bend County. The Contractor further represents that it accepts a fiduciary role and responsibility with respect to Fort Bend County and will, to its best abilities, act in the best interests of Fort Bend County and the timely completion of the Project. The Contractor agrees and understands that neither it nor any of its agents or employees may act in the name of Fort Bend County except and unless specifically authorized in writing by Fort Bend County to do so. The Contractor shall furnish construction administration and management services and use the Contractor's best efforts to complete the Project in an expeditious and economical manner consistent with the interests of Fort Bend County.

19.0 NOTICE

19.1 All written notices, demands, and other papers or documents to be delivered to Fort Bend County under this Contract shall be delivered to the Engineering Department, 301 Jackson, Richmond, Texas 77469 , or at such other place or places as Fort Bend County may from time to time designate by written notice delivered to the Contractor. For purposes of notice under this Contract, a copy of any notice or communication hereunder shall also be forwarded to the following address: Fort Bend County, 301 Jackson Street, Richmond, Texas 77469, Attention: County Judge.
19.2 All written notices, demands, and other papers or documents to be delivered to the Contractor under this Contract shall be delivered to the Authorized Representative identified in the Contract documents or such other place or places as the Contractor may designate by written notice delivered to Fort Bend County.

20.0 RECORDS:

20.1 Fort Bend County shall be the absolute and unqualified owner of all drawings, preliminary layouts, record drawings, sketches and other documents prepared pursuant to the Contract by Contractor.
20.2 The Contractor agrees to maintain and preserve for a period of at least five years after the earlier of the expiration of the defects period or termination of this Contract, accurate and complete records relating to the performance of the
\qquad

Project. The Contractor agrees to, upon request, provide Fort Bend County with such records.

21.0 SUCCESSORS \& ASSIGNS:

21.1 Fort Bend County and the Contractor bind themselves and their successors, executors, administrators and assigns to the other party of this Contract and to the successors, executors, administrators and assigns of such other party, in respect to all covenants of this Contract.
21.2 Neither Fort Bend County nor the Contractor shall assign, sublet or transfer its interest in this Contract without the prior written consent of the other.
21.3 Nothing herein shall be construed as creating any personal liability on the part of any officer or agent of any public and/or governmental body that may be a party hereto.

22.0 PUBLIC CONTACT:

Contact with the news media, citizens of Fort Bend County or governmental agencies shall be the sole responsibility of Fort Bend County. Under no circumstances, whatsoever, shall Contractor release any material or information developed in the performance of its services hereunder without the express written permission of Fort Bend County, except where required to do so by law.

23.0 MODIFICATIONS:

This instrument contains the entire Contract between the parties relating to the rights herein granted and obligations herein assumed. Any oral or written representations or modifications concerning this instrument shall be of no force and effect excepting a subsequent written modification signed by both parties hereto.

24.0 SILENCE OF SPECIFICATIONS:

The apparent silence of specifications as to any detail, or the apparent omission from it of a detailed description concerning any point, shall be regarded as meaning that only the best commercial practice is to prevail and that only material and workmanship of the finest quality are to be used. All interpretations of specifications shall be made on the basis of this statement. The items furnished under this contract shall be new, unused of the latest product in production to commercial trade and shall be of the highest quality as to materials used and workmanship. Manufacturer furnishing these items shall be experienced in design and construction of such items and shall be an established supplier of the item bid.

25.0 SEVERABILITY:

In the event one or more of the provisions contained in these requirements or the specifications shall for any reason be held to be invalid, illegal or unenforceable in any respect, such invalidity,
\qquad
illegality, or unenforceability shall not affect any other provision hereof and these requirements or the specifications shall be construed as if such invalid, illegal, or unenforceable provision had never been contained herein.

26.0 GOVERNING FORMS:

In the event of any conflict between the terms and provisions of these requirements and the specifications, the specifications shall govern. In the event of any conflict of interpretation of any part of this overall document, Fort Bend County's interpretation shall govern.

27.0 TAX EXEMPT:

Fort Bend County is exempt from state and local sales and use taxes under Section 151.309 of the Texas Tax Code. This Contract is deemed to be a separate contract for Texas tax purposes, and as such, Fort Bend County hereby issues its Texas Exemption for the purchase of any items qualifying for exemption under this Contract. Contractor is to issue its Texas Resale Certificate to vendors and subcontractors for such items qualifying for this exemption, and further, contractor should state these items at cost.

28.0 ENTIRE AGREEMENT:

The Parties agree that this Contract contains all of the terms and conditions of the understanding of the parties relating to the subject matter hereof. All prior negotiations, discussions, correspondence and preliminary understandings between the parties and others relating hereto are superseded by this Contract. By entering into this Contract, the parties do not intend to create any obligations, express or implied, other than those specifically set out in this Contract.

29.0 APPLICABLE LAW \& VENUE

This Contract shall be construed under and in accord with the laws of the State of Texas, and all obligations of the parties created hereunder are performable in Fort Bend County, Texas, and that venue for any litigation arising out of or related to this Contract shall lie solely in the court of appropriate jurisdiction located in Fort Bend County, Texas.

30.0 ENCLOSURE:

The following being incorporated herein by reference for all purposes as though fully set forth herein word for word.

Enclosure \#1 - Specifications and Plans
31.0 PRICING: Complete excel unit pricing form.

32.0 PROJECT DURATION:

Bidder agrees, if awarded the contract, to complete all work required by the contract documents within ___ calendar days (maximum 548 days) after issuance of a purchase order by the Initials of Bidder:

County Purchasing Agent and notice to proceed by the Engineering Department.

33.0 AWARD:

This contract will be awarded to the overall lowest and best bid.

34.0 TEXAS ETHICS COMMISSION FORM 1295:

34.1 Effective January 1, 2016 all contracts executed by Commissioners Court, regardless of the dollar amount, will require completion of Form 1295 "Certificate of Interested Parties", per the new Government Code Statute §2252.908. All vendors submitting a response to a formal Bid, RFP, SOQ or any contracts, contract amendments, renewals or change orders are required to complete the Form 1295 online through the State of Texas Ethics Commission website. Please visit: https://www.ethics.state.tx.us/filinginfo/1295/
34.2 On-line instructions:
34.2.1 Name of governmental entity is to read: Fort Bend County.
34.2.2 Identification number used by the governmental entity is: B24-017.
34.2.3 Description is the title of the solicitation: Belknap Road Pavement and Drainage Improvements.
34.3 Apparent low bidder(s) will be required to provide the Form 1295 within three (3) calendar days from notification; however, if your company is publicly traded you are not required to complete this form.

35.0 STATE LAW REQUIREMENTS FOR CONTRACTS:

The contents of this section are required by Texas Law and are included by County regardless of content.
35.1 Agreement to Not Boycott Israel Chapter 2271 Texas Government Code: Contractor verifies that if Contractor employs ten (10) or more full-time employees and this Agreement has a value of $\$ 100,000$ or more, Contractor does not boycott Israel and will not boycott Israel during the term of this Agreement.
35.2 Texas Government Code Section 2251.152 Acknowledgment: By signature on vendor form, Contractor represents pursuant to Section 2252.152 of the Texas Government Code, that Contractor is not listed on the website of the Comptroller of the State of Texas concerning the listing of companies that are identified under Section 806.051, Section 807.051 or Section 2253.153.
\qquad

36.0 HUMAN TRAFFICKING:

By acceptance of this contract, Contractor acknowledges that Fort Bend County is opposed to human trafficking and that no County funds will be used in support of services or activities that violate human trafficking laws

37.0 INDEMNITY FOR BODILY INJURY OR DEATH CLAIMS

Indemnity for certain bodily injury or death claims. To the fullest extent permitted by law, contractor shall indemnify, defend and hold harmless the county from and against all claims, losses, expenses, costs, demands, suits, causes of action, and damages, including without limitation, attorneys' fees and expenses, for bodily injury or death of any employee of contractor, its agents, or its subcontractors of every tier, even if the bodily injury or death is caused by or alleged to have been caused by the sole or partial negligence, fault or strict liability of any indemnitee.

Indemnity for all other claims. For all claims not addressed in the preceding section or section 11.0 above , including, without limitation, claims for damage to or loss of use of property and claims for bodily injury to or death of any person other than that addressed in the immediately preceding section, to the fullest extent permitted by law, contractor shall indemnify, defend and hold harmless the county from and against all claims, losses, expenses, costs, demands, suits, causes of action, and damages, including without limitation, attorneys' fees and expenses, of any nature whatsoever arising out of or related to this contract or the work to be performed under this contract, but only to the extent of the negligence or other fault of the contractor, its agents, representatives, employees or subcontractors of any tier.

38.0 AGREEMENT TO ARBITRATE UNDER THE FEDERAL ARBITRATION ACT

To the maximum extent allowed by law, any controversy or claim arising out of or relating to this contract, or the breach thereof, shall be settled by arbitration under the Federal Arbitration Act, 9 U.S.C. § 1, et seq. administered by the American Arbitration Association under its Construction Industry Arbitration Rules, and judgment on the award rendered by the arbitrator(s) may be entered in any court having jurisdiction thereof. For cases in which the amount in controversy is less than $\$ 250,000$, there shall be no discovery other than an expeditious and complete exchange of documents relative to the dispute. For cases in which the amount in controversy is between $\$ 250,000$ and $\$ 1,000,000$, there shall be no discovery except for an expeditious and complete exchange of such documentary information and up to three (3) depositions per side (including expert depositions, if any). For cases in which the amount in controversy exceeds $\$ 1,000,000$, there shall be no discovery except for an expeditious and complete exchange of such documentary information up to five (5) depositions per side (including expert depositions, if any). No formal interrogatories, request for admissions or formal request for production of documents shall be allowed in the arbitration process. The hearing on the merits will be completed no later than ninety (90) days after the initial demand for arbitration is made for disputes involving amounts in controversy of up to $\$ 250,000$; no later than no later than one hundred twenty (120) days after the initial demand for arbitration is made for disputes involving amounts in controversy of between $\$ 250,000$ and $\$ 1,000,000$; and, no
\qquad
later than three hundred sixty five (365) days after the initial demand for arbitration is made for disputes involving amounts in controversy of over $\$ 1,000,000$.

39.0 ADDITIONAL REQUIRED FORMS:

All vendors submitting are required to complete and return with submission:

39.1 Vendor Form

39.2 W9 Form
39.3 Tax Form/Debt/Residence Certification
39.4 Contractor Acknowledgement of Stormwater Management Program
\qquad

Contract Sheet

Bid 24-017

THE STATE OF TEXAS
 COUNTY OF FORT BEND

This memorandum of agreement made and entered into on the \qquad day of \qquad 20 \qquad , by and between Fort Bend County in the State of Texas (hereinafter designated County), acting herein by County Judge KP George, by virtue of an order of Fort Bend County Commissioners Court, and \ldots (company name) (hereinafter designated Contractor).

WITNESSETH:

The Contractor and the County agree that the bid and specifications for the Belknap Road Pavement and Drainage Improvements for Fort Bend County Mobility Bond Project No. 17211 which are hereto attached and made a part hereof, together with this instrument and the bond (when required) shall constitute the full agreement and contract between parties and for furnishing the items set out and described; the County agrees to pay the prices stipulated in the accepted bid.

It is further agreed that this contract shall not become binding or effective until signed by the parties hereto and a purchase order authorizing the items desired has been issued.

Executed at Richmond, Texas this \qquad day of \qquad 20 \qquad .

By: \qquad
County Judge, KP George

By: \qquad
Signature of Contractor

By: \qquad
Printed Name and Title

Internal Revenue Service

Part I Taxpayer Identification Number (TIN)

Enter your TIN in the appropriate box. The TIN provided must match the name given on line 1 to avoid backup withholding. For individuals, this is generally your social security number (SSN). However, for a resident alien, sole proprietor, or disregarded entity, see the Part I instructions on page 3. For other entities, it is your employer identification number (EIN). If you do not have a number, see How to get a TIN on page 3.
Note. If the account is in more than one name, see the instructions for line 1 and the chart on page 4 for guidelines on whose number to enter.

Part II Certification

Under penalties of perjury, I certify that:

1. The number shown on this form is my correct taxpayer identification number (or I am waiting for a number to be issued to me); and
2. I am not subject to backup withholding because: (a) I am exempt from backup withholding, or (b) I have not been notified by the Internal Revenue Service (IRS) that I am subject to backup withholding as a result of a failure to report all interest or dividends, or (c) the IRS has notified me that I am no longer subject to backup withholding; and
3. I am a U.S. citizen or other U.S. person (defined below); and
4. The FATCA code(s) entered on this form (if any) indicating that I am exempt from FATCA reporting is correct.

Certification instructions. You must cross out item 2 above if you have been notified by the IRS that you are currently subject to backup withholding because you have failed to report all interest and dividends on your tax return. For real estate transactions, item 2 does not apply. For mortgage interest paid, acquisition or abandonment of secured property, cancellation of debt, contributions to an individual retirement arrangement (IRA), and generally, payments other than interest and dividends, you are not required to sign the certification, but you must provide your correct TIN. See the instructions on page 3.

Sign	Signature of
Here	U.S. person

General Instructions

Section references are to the Internal Revenue Code unless otherwise noted.
Future developments. Information about developments affecting Form W-9 (such as legislation enacted after we release it) is at www.irs.gov/fw9.

Purpose of Form

An individual or entity (Form W-9 requester) who is required to file an information return with the IRS must obtain your correct taxpayer identification number (TIN) which may be your social security number (SSN), individual taxpayer identification number (ITIN), adoption taxpayer identification number (ATIN), or employer identification number (EIN), to report on an information return the amount paid to you, or other amount reportable on an information return. Examples of information returns include, but are not limited to, the following:

- Form 1099-INT (interest earned or paid)
- Form 1099-DIV (dividends, including those from stocks or mutual funds)
- Form 1099-MISC (various types of income, prizes, awards, or gross proceeds)
- Form 1099-B (stock or mutual fund sales and certain other transactions by brokers)
- Form 1099-S (proceeds from real estate transactions)
- Form 1099-K (merchant card and third party network transactions)
- Form 1098 (home mortgage interest), 1098-E (student loan interest), 1098-T (tuition)
- Form 1099-C (canceled debt)
- Form 1099-A (acquisition or abandonment of secured property)

Use Form W-9 only if you are a U.S. person (including a resident alien), to provide your correct TIN.

If you do not return Form W-9 to the requester with a TIN, you might be subject to backup withholding. See What is backup withholding? on page 2.

By signing the filled-out form, you:

1. Certify that the TIN you are giving is correct (or you are waiting for a number to be issued),
2. Certify that you are not subject to backup withholding, or
3. Claim exemption from backup withholding if you are a U.S. exempt payee. If applicable, you are also certifying that as a U.S. person, your allocable share of any partnership income from a U.S. trade or business is not subject to the withholding tax on foreign partners' share of effectively connected income, and
4. Certify that FATCA code(s) entered on this form (if any) indicating that you are exempt from the FATCA reporting, is correct. See What is FATCA reporting? on page 2 for further information.

Note. If you are a U.S. person and a requester gives you a form other than Form W-9 to request your TIN, you must use the requester's form if it is substantially similar to this Form W-9.
Definition of a U.S. person. For federal tax purposes, you are considered a U.S. person if you are:

- An individual who is a U.S. citizen or U.S. resident alien;
- A partnership, corporation, company, or association created or organized in the United States or under the laws of the United States;
- An estate (other than a foreign estate); or
- A domestic trust (as defined in Regulations section 301.7701-7).

Special rules for partnerships. Partnerships that conduct a trade or business in the United States are generally required to pay a withholding tax under section 1446 on any foreign partners' share of effectively connected taxable income from such business. Further, in certain cases where a Form W-9 has not been received, the rules under section 1446 require a partnership to presume that a partner is a foreign person, and pay the section 1446 withholding tax. Therefore, if you are a U.S. person that is a partner in a partnership conducting a trade or business in the United States, provide Form W-9 to the partnership to establish your U.S. status and avoid section 1446 withholding on your share of partnership income.

In the cases below, the following person must give Form W-9 to the partnership for purposes of establishing its U.S. status and avoiding withholding on its allocable share of net income from the partnership conducting a trade or business in the United States:

- In the case of a disregarded entity with a U.S. owner, the U.S. owner of the disregarded entity and not the entity;
- In the case of a grantor trust with a U.S. grantor or other U.S. owner, generally, the U.S. grantor or other U.S. owner of the grantor trust and not the trust; and - In the case of a U.S. trust (other than a grantor trust), the U.S. trust (other than a grantor trust) and not the beneficiaries of the trust.
Foreign person. If you are a foreign person or the U.S. branch of a foreign bank that has elected to be treated as a U.S. person, do not use Form W-9. Instead, use the appropriate Form W-8 or Form 8233 (see Publication 515, Withholding of Tax on Nonresident Aliens and Foreign Entities).
Nonresident alien who becomes a resident alien. Generally, only a nonresident alien individual may use the terms of a tax treaty to reduce or eliminate U.S. tax on certain types of income. However, most tax treaties contain a provision known as a "saving clause." Exceptions specified in the saving clause may permit an exemption from tax to continue for certain types of income even after the payee has otherwise become a U.S. resident alien for tax purposes.

If you are a U.S. resident alien who is relying on an exception contained in the saving clause of a tax treaty to claim an exemption from U.S. tax on certain types of income, you must attach a statement to Form W-9 that specifies the following five items:

1. The treaty country. Generally, this must be the same treaty under which you claimed exemption from tax as a nonresident alien.
2. The treaty article addressing the income.
3. The article number (or location) in the tax treaty that contains the saving clause and its exceptions.
4. The type and amount of income that qualifies for the exemption from tax.
5. Sufficient facts to justify the exemption from tax under the terms of the treaty article.
Example. Article 20 of the U.S.-China income tax treaty allows an exemption from tax for scholarship income received by a Chinese student temporarily present in the United States. Under U.S. law, this student will become a resident alien for tax purposes if his or her stay in the United States exceeds 5 calendar years. However, paragraph 2 of the first Protocol to the U.S.-China treaty (dated April 30, 1984) allows the provisions of Article 20 to continue to apply even after the Chinese student becomes a resident alien of the United States. A Chinese student who qualifies for this exception (under paragraph 2 of the first protocol) and is relying on this exception to claim an exemption from tax on his or her scholarship or fellowship income would attach to Form W-9 a statement that includes the information described above to support that exemption.
If you are a nonresident alien or a foreign entity, give the requester the appropriate completed Form W-8 or Form 8233.

Backup Withholding

What is backup withholding? Persons making certain payments to you must under certain conditions withhold and pay to the IRS 28% of such payments. This is called "backup withholding." Payments that may be subject to backup withholding include interest, tax-exempt interest, dividends, broker and barter exchange transactions, rents, royalties, nonemployee pay, payments made in settlement of payment card and third party network transactions, and certain payments from fishing boat operators. Real estate transactions are not subject to backup withholding.
You will not be subject to backup withholding on payments you receive if you give the requester your correct TIN, make the proper certifications, and report all your taxable interest and dividends on your tax return.

Payments you receive will be subject to backup withholding if:

1. You do not furnish your TIN to the requester,
2. You do not certify your TIN when required (see the Part II instructions on page 3 for details),
3. The IRS tells the requester that you furnished an incorrect TIN,
4. The IRS tells you that you are subject to backup withholding because you did not report all your interest and dividends on your tax return (for reportable interest and dividends only), or
5. You do not certify to the requester that you are not subject to backup withholding under 4 above (for reportable interest and dividend accounts opened after 1983 only).

Certain payees and payments are exempt from backup withholding. See Exempt payee code on page 3 and the separate Instructions for the Requester of Form W-9 for more information.

Also see Special rules for partnerships above.

What is FATCA reporting?

The Foreign Account Tax Compliance Act (FATCA) requires a participating foreign financial institution to report all United States account holders that are specified United States persons. Certain payees are exempt from FATCA reporting. See Exemption from FATCA reporting code on page 3 and the Instructions for the Requester of Form W-9 for more information.

Updating Your Information

You must provide updated information to any person to whom you claimed to be an exempt payee if you are no longer an exempt payee and anticipate receiving reportable payments in the future from this person. For example, you may need to provide updated information if you are a C corporation that elects to be an S corporation, or if you no longer are tax exempt. In addition, you must furnish a new Form W-9 if the name or TIN changes for the account; for example, if the grantor of a grantor trust dies.

Penalties

Failure to furnish TIN. If you fail to furnish your correct TIN to a requester, you are subject to a penalty of $\$ 50$ for each such failure unless your failure is due to reasonable cause and not to willful neglect.
Civil penalty for false information with respect to withholding. If you make a false statement with no reasonable basis that results in no backup withholding, you are subject to a $\$ 500$ penalty.
Criminal penalty for falsifying information. Willfully falsifying certifications or affirmations may subject you to criminal penalties including fines and/or imprisonment.
Misuse of TINs. If the requester discloses or uses TINs in violation of federal law, the requester may be subject to civil and criminal penalties.

Specific Instructions

Line 1

You must enter one of the following on this line; do not leave this line blank. The name should match the name on your tax return.

If this Form W-9 is for a joint account, list first, and then circle, the name of the person or entity whose number you entered in Part I of Form W-9.
a. Individual. Generally, enter the name shown on your tax return. If you have changed your last name without informing the Social Security Administration (SSA) of the name change, enter your first name, the last name as shown on your social security card, and your new last name.
Note. ITIN applicant: Enter your individual name as it was entered on your Form W-7 application, line 1a. This should also be the same as the name you entered on the Form 1040/1040A/1040EZ you filed with your application.
b. Sole proprietor or single-member LLC. Enter your individual name as shown on your 1040/1040A/1040EZ on line 1. You may enter your business, trade, or "doing business as" (DBA) name on line 2.
c. Partnership, LLC that is not a single-member LLC, C Corporation, or S Corporation. Enter the entity's name as shown on the entity's tax return on line 1 and any business, trade, or DBA name on line 2.
d. Other entities. Enter your name as shown on required U.S. federal tax documents on line 1. This name should match the name shown on the charter or other legal document creating the entity. You may enter any business, trade, or DBA name on line 2.
e. Disregarded entity. For U.S. federal tax purposes, an entity that is disregarded as an entity separate from its owner is treated as a "disregarded entity." See Regulations section 301.7701-2(c)(2)(iii). Enter the owner's name on line 1. The name of the entity entered on line 1 should never be a disregarded entity. The name on line 1 should be the name shown on the income tax return on which the income should be reported. For example, if a foreign LLC that is treated as a disregarded entity for U.S. federal tax purposes has a single owner that is a U.S. person, the U.S. owner's name is required to be provided on line 1. If the direct owner of the entity is also a disregarded entity, enter the first owner that is not disregarded for federal tax purposes. Enter the disregarded entity's name on line 2, "Business name/disregarded entity name." If the owner of the disregarded entity is a foreign person, the owner must complete an appropriate Form W-8 instead of a Form W-9. This is the case even if the foreign person has a U.S. TIN.

Line 2

If you have a business name, trade name, DBA name, or disregarded entity name, you may enter it on line 2.

Line 3

Check the appropriate box in line 3 for the U.S. federal tax classification of the person whose name is entered on line 1. Check only one box in line 3.
Limited Liability Company (LLC). If the name on line 1 is an LLC treated as a partnership for U.S. federal tax purposes, check the "Limited Liability Company" box and enter "P" in the space provided. If the LLC has filed Form 8832 or 2553 to be taxed as a corporation, check the "Limited Liability Company" box and in the space provided enter " C " for C corporation or " S " for S corporation. If it is a single-member LLC that is a disregarded entity, do not check the "Limited Liability Company" box; instead check the first box in line 3 "Individual/sole proprietor or single-member LLC."

Line 4, Exemptions

If you are exempt from backup withholding and/or FATCA reporting, enter in the appropriate space in line 4 any code(s) that may apply to you.

Exempt payee code.

- Generally, individuals (including sole proprietors) are not exempt from backup withholding.
- Except as provided below, corporations are exempt from backup withholding for certain payments, including interest and dividends.
- Corporations are not exempt from backup withholding for payments made in settlement of payment card or third party network transactions.
- Corporations are not exempt from backup withholding with respect to attorneys' fees or gross proceeds paid to attorneys, and corporations that provide medical or health care services are not exempt with respect to payments reportable on Form 1099-MISC.
The following codes identify payees that are exempt from backup withholding. Enter the appropriate code in the space in line 4.

1-An organization exempt from tax under section 501(a), any IRA, or a custodial account under section 403(b)(7) if the account satisfies the requirements of section 401(f)(2)

2-The United States or any of its agencies or instrumentalities
3-A state, the District of Columbia, a U.S. commonwealth or possession, or any of their political subdivisions or instrumentalities
4-A foreign government or any of its political subdivisions, agencies, or instrumentalities
5-A corporation
6-A dealer in securities or commodities required to register in the United
States, the District of Columbia, or a U.S. commonwealth or possession
7-A futures commission merchant registered with the Commodity Futures Trading Commission

8-A real estate investment trust
9-An entity registered at all times during the tax year under the Investment Company Act of 1940

10-A common trust fund operated by a bank under section 584(a)
11-A financial institution
12-A middleman known in the investment community as a nominee or custodian

13-A trust exempt from tax under section 664 or described in section 4947 The following chart shows types of payments that may be exempt from backup withholding. The chart applies to the exempt payees listed above, 1 through 13.

IF the payment is for ...	THEN the payment is exempt for ...
Interest and dividend payments	All exempt payees except for 7
Broker transactions	Exempt payees 1 through 4 and 6 through 11 and all C corporations. S corporations must not enter an exempt payee code because they are exempt only for sales of noncovered securities acquired prior to 2012.
Barter exchange transactions and patronage dividends	Exempt payees 1 through 4
Payments over \$600 required to be reported and direct sales over \$5,000	Generally, exempt payees 1 through 5 ${ }^{2}$
Payments made in settlement of payment card or third party network transactions	Exempt payees 1 through 4

${ }^{1}$ See Form 1099-MISC, Miscellaneous Income, and its instructions.
${ }^{2}$ However, the following payments made to a corporation and reportable on Form 1099-MISC are not exempt from backup withholding: medical and health care payments, attorneys' fees, gross proceeds paid to an attorney reportable under section $6045(\mathrm{f})$, and payments for services paid by a federal executive agency.
Exemption from FATCA reporting code. The following codes identify payees that are exempt from reporting under FATCA. These codes apply to persons submitting this form for accounts maintained outside of the United States by certain foreign financial institutions. Therefore, if you are only submitting this form for an account you hold in the United States, you may leave this field blank. Consult with the person requesting this form if you are uncertain if the financial institution is subject to these requirements. A requester may indicate that a code is not required by providing you with a Form W-9 with "Not Applicable" (or any similar indication) written or printed on the line for a FATCA exemption code.
A-An organization exempt from tax under section 501(a) or any individual retirement plan as defined in section 7701(a)(37)
B-The United States or any of its agencies or instrumentalities
C-A state, the District of Columbia, a U.S. commonwealth or possession, or any of their political subdivisions or instrumentalities

D-A corporation the stock of which is regularly traded on one or more established securities markets, as described in Regulations section 1.1472-1(c)(1)(i)

E-A corporation that is a member of the same expanded affiliated group as a corporation described in Regulations section 1.1472-1(c)(1)(i)
F-A dealer in securities, commodities, or derivative financial instruments (including notional principal contracts, futures, forwards, and options) that is registered as such under the laws of the United States or any state

G-A real estate investment trust

H-A regulated investment company as defined in section 851 or an entity registered at all times during the tax year under the Investment Company Act of 1940
I-A common trust fund as defined in section 584(a)
$J-A$ bank as defined in section 581
$\mathrm{K}-\mathrm{A}$ broker
L-A trust exempt from tax under section 664 or described in section 4947(a)(1)
M—A tax exempt trust under a section 403(b) plan or section 457(g) plan
Note. You may wish to consult with the financial institution requesting this form to determine whether the FATCA code and/or exempt payee code should be completed.

Line 5

Enter your address (number, street, and apartment or suite number). This is where the requester of this Form W-9 will mail your information returns.

Line 6

Enter your city, state, and ZIP code.

Part I. Taxpayer Identification Number (TIN)

Enter your TIN in the appropriate box. If you are a resident alien and you do not have and are not eligible to get an SSN, your TIN is your IRS individual taxpayer identification number (ITIN). Enter it in the social security number box. If you do not have an ITIN, see How to get a TIN below.
If you are a sole proprietor and you have an EIN, you may enter either your SSN or EIN. However, the IRS prefers that you use your SSN.

If you are a single-member LLC that is disregarded as an entity separate from its owner (see Limited Liability Company (LLC) on this page), enter the owner's SSN (or EIN, if the owner has one). Do not enter the disregarded entity's EIN. If the LLC is classified as a corporation or partnership, enter the entity's EIN.
Note. See the chart on page 4 for further clarification of name and TIN combinations.
How to get a TIN. If you do not have a TIN, apply for one immediately. To apply for an SSN, get Form SS-5, Application for a Social Security Card, from your local SSA office or get this form online at www.ssa.gov. You may also get this form by calling 1-800-772-1213. Use Form W-7, Application for IRS Individual Taxpayer Identification Number, to apply for an ITIN, or Form SS-4, Application for Employer Identification Number, to apply for an EIN. You can apply for an EIN online by accessing the IRS website at www.irs.gov/businesses and clicking on Employer Identification Number (EIN) under Starting a Business. You can get Forms W-7 and SS-4 from the IRS by visiting IRS.gov or by calling 1-800-TAX-FORM (1-800-829-3676).
If you are asked to complete Form W-9 but do not have a TIN, apply for a TIN and write "Applied For" in the space for the TIN, sign and date the form, and give it to the requester. For interest and dividend payments, and certain payments made with respect to readily tradable instruments, generally you will have 60 days to get a TIN and give it to the requester before you are subject to backup withholding on payments. The 60-day rule does not apply to other types of payments. You will be subject to backup withholding on all such payments until you provide your TIN to the requester.
Note. Entering "Applied For" means that you have already applied for a TIN or that you intend to apply for one soon.
Caution: A disregarded U.S. entity that has a foreign owner must use the appropriate Form W-8.

Part II. Certification

To establish to the withholding agent that you are a U.S. person, or resident alien, sign Form $W-9$. You may be requested to sign by the withholding agent even if items 1, 4, or 5 below indicate otherwise.

For a joint account, only the person whose TIN is shown in Part I should sign (when required). In the case of a disregarded entity, the person identified on line 1 must sign. Exempt payees, see Exempt payee code earlier.
Signature requirements. Complete the certification as indicated in items 1 through 5 below.

1. Interest, dividend, and barter exchange accounts opened before 1984 and broker accounts considered active during 1983. You must give your correct TIN, but you do not have to sign the certification.
2. Interest, dividend, broker, and barter exchange accounts opened after 1983 and broker accounts considered inactive during 1983. You must sign the certification or backup withholding will apply. If you are subject to backup withholding and you are merely providing your correct TIN to the requester, you must cross out item 2 in the certification before signing the form.
3. Real estate transactions. You must sign the certification. You may cross out item 2 of the certification.
4. Other payments. You must give your correct TIN, but you do not have to sign the certification unless you have been notified that you have previously given an incorrect TIN. "Other payments" include payments made in the course of the requester's trade or business for rents, royalties, goods (other than bills for merchandise), medical and health care services (including payments to corporations), payments to a nonemployee for services, payments made in settlement of payment card and third party network transactions, payments to certain fishing boat crew members and fishermen, and gross proceeds paid to attorneys (including payments to corporations).
5. Mortgage interest paid by you, acquisition or abandonment of secured property, cancellation of debt, qualified tuition program payments (under section 529), IRA, Coverdell ESA, Archer MSA or HSA contributions or distributions, and pension distributions. You must give your correct TIN, but you do not have to sign the certification.

What Name and Number To Give the Requester

For this type of account:	Give name and SSN of:
1. Individual	The individual
2. Two or more individuals (joint account)	The actual owner of the account or, if combined funds, the first individual on the account ${ }^{1}$
3. Custodian account of a minor (Uniform Gift to Minors Act)	The minor ${ }^{2}$
4. a. The usual revocable savings trust (grantor is also trustee)	The grantor-trustee ${ }^{1}$
b. So-called trust account that is not a legal or valid trust under state law	The actual owner ${ }^{1}$
5. Sole proprietorship or disregarded entity owned by an individual	The owner ${ }^{3}$
6. Grantor trust filing under Optional Form 1099 Filing Method 1 (see Regulations section 1.671-4(b)(2)(i) (A))	The grantor*
For this type of account:	Give name and EIN of:
7. Disregarded entity not owned by an individual	The owner
8. A valid trust, estate, or pension trust	Legal entity ${ }^{4}$
9. Corporation or LLC electing corporate status on Form 8832 or Form 2553	The corporation
10. Association, club, religious, charitable, educational, or other taxexempt organization	The organization
11. Partnership or multi-member LLC	The partnership
12. A broker or registered nominee	The broker or nominee
13. Account with the Department of Agriculture in the name of a public entity (such as a state or local government, school district, or prison) that receives agricultural program payments	The public entity
14. Grantor trust filing under the Form 1041 Filing Method or the Optional Form 1099 Filing Method 2 (see Regulations section 1.671-4(b)(2)(i) (B))	The trust

${ }^{1}$ List first and circle the name of the person whose number you furnish. If only one person on a joint account has an SSN, that person's number must be furnished.
${ }^{2}$ Circle the minor's name and furnish the minor's SSN.
${ }^{3}$ You must show your individual name and you may also enter your business or DBA name on the "Business name/disregarded entity" name line. You may use either your SSN or EIN (if you have one), but the IRS encourages you to use your SSN.
${ }^{4}$ List first and circle the name of the trust, estate, or pension trust. (Do not furnish the TIN of the personal representative or trustee unless the legal entity itself is not designated in the account title.) Also see Special rules for partnerships on page 2.
*Note. Grantor also must provide a Form W-9 to trustee of trust.
Note. If no name is circled when more than one name is listed, the number will be considered to be that of the first name listed.

Secure Your Tax Records from Identity Theft

Identity theft occurs when someone uses your personal information such as your name, SSN, or other identifying information, without your permission, to commit fraud or other crimes. An identity thief may use your SSN to get a job or may file a tax return using your SSN to receive a refund.

To reduce your risk:

- Protect your SSN,
- Ensure your employer is protecting your SSN, and
- Be careful when choosing a tax preparer.

If your tax records are affected by identity theft and you receive a notice from the IRS, respond right away to the name and phone number printed on the IRS notice or letter.

If your tax records are not currently affected by identity theft but you think you are at risk due to a lost or stolen purse or wallet, questionable credit card activity or credit report, contact the IRS Identity Theft Hotline at 1-800-908-4490 or submit Form 14039.

For more information, see Publication 4535, Identity Theft Prevention and Victim Assistance.

Victims of identity theft who are experiencing economic harm or a system problem, or are seeking help in resolving tax problems that have not been resolved through normal channels, may be eligible for Taxpayer Advocate Service (TAS) assistance. You can reach TAS by calling the TAS toll-free case intake line at 1-877-777-4778 or TTY/TDD 1-800-829-4059.
Protect yourself from suspicious emails or phishing schemes. Phishing is the creation and use of email and websites designed to mimic legitimate business emails and websites. The most common act is sending an email to a user falsely claiming to be an established legitimate enterprise in an attempt to scam the user into surrendering private information that will be used for identity theft.

The IRS does not initiate contacts with taxpayers via emails. Also, the IRS does not request personal detailed information through email or ask taxpayers for the PIN numbers, passwords, or similar secret access information for their credit card, bank, or other financial accounts.

If you receive an unsolicited email claiming to be from the IRS, forward this message to phishing@irs.gov. You may also report misuse of the IRS name, logo, or other IRS property to the Treasury Inspector General for Tax Administration (TIGTA) at 1-800-366-4484. You can forward suspicious emails to the Federal Trade Commission at: spam@uce.gov or contact them at www.ftc.gov/idtheft or 1-877-IDTHEFT (1-877-438-4338).
Visit IRS.gov to learn more about identity theft and how to reduce your risk.

Privacy Act Notice

Section 6109 of the Internal Revenue Code requires you to provide your correct TIN to persons (including federal agencies) who are required to file information returns with the IRS to report interest, dividends, or certain other income paid to you; mortgage interest you paid; the acquisition or abandonment of secured property; the cancellation of debt; or contributions you made to an IRA, Archer MSA, or HSA. The person collecting this form uses the information on the form to file information returns with the IRS, reporting the above information. Routine uses of this information include giving it to the Department of Justice for civil and criminal litigation and to cities, states, the District of Columbia, and U.S. commonwealths and possessions for use in administering their laws. The information also may be disclosed to other countries under a treaty, to federal and state agencies to enforce civil and criminal laws, or to federal law enforcement and intelligence agencies to combat terrorism. You must provide your TIN whether or not you are required to file a tax return. Under section 3406, payers must generally withhold a percentage of taxable interest, dividend, and certain other payments to a payee who does not give a TIN to the payer. Certain penalties may also apply for providing false or fraudulent information.

Job No.:
TAX FORM/DEBT/ RESIDENCE CERTIFICATION (for Advertised Projects)

Taxpayer Identification Number (T.I.N.): \qquad
Company Name submitting Bid/Proposal: \qquad
Mailing Address:
Are you registered to do business in the State of Texas? Yes No
If you are an individual, list the names and addresses of any partnership of which you are a general partner or any assumed name(s) under which you operate your business
I. Property: List all taxable property in Fort Bend County owned by you or above partnerships as well as any d/b/a names. Include real and personal property as well as mineral interest accounts. (Use a second sheet of paper if necessary.)

Fort Bend County Tax Acct. No.* Property address or location**

* This is the property account identification number assigned by the Fort Bend County Appraisal District.
** For real property, specify the property address or legal description. For business personal property, specify the address where the property is located. For example, office equipment will normally be at your office, but inventory may be stored at a warehouse or other location.
II. Fort Bend County Debt - Do you owe any debts to Fort Bend County (taxes on properties listed in I above, tickets, fines, tolls, court judgments, etc.)?

Yes No If yes, attach a separate page explaining the debt.
III. Residence Certification - Pursuant to Texas Government Code §2252.001 et seq., as amended, Fort Bend County requests Residence Certification. §2252.001 et seq. of the Government Code provides some restrictions on the awarding of governmental contracts; pertinent provisions of §2252.001 are stated below:
(3) "Nonresident bidder" refers to a person who is not a resident.
(4) "Resident bidder" refers to a person whose principal place of business is in this state, including a contractor whose ultimate parent company or majority owner has its principal place of business in this state.

I certify that \qquad is a Resident Bidder of Texas as defined in Government Code [Company Name]
§2252.001.
I certify that \qquad is a Nonresident Bidder as defined in Government Code [Company Name]
§2252.001 and our principal place of business is \qquad .
[City and State]

Mandatory Form

Contractor Acknowledgement of Storm Water Management Program

I hereby acknowledge that I am aware of the stormwater management program and standard operating procedures developed by Fort Bend County in compliance with the TPDES General Permit No. TXR040000. I agree to comply with all applicable best management practices and standard operating procedures while conducting my services for Fort Bend County. I agree to conduct all services in a manner that does not introduce illicit discharges of pollutants to streets, stormwater inlets, drainage ditches or any portion of the drainage system. The following materials and/or pollutant sources must not be discharged to the drainage system as a result of any services provided:

1. Grass clippings, leaves, mulch, rocks, sand, dirt or other waste materials resulting from landscaping activities, (except those materials resulting from ditch mowing or maintenance activities)
2. Herbicides, pesticides and/or fertilizers, (except those intended for aquatic use)
3. Detergents, fuels, solvents, oils and/or lubricants, other equipment and/or vehicle fluids,
4. Other hazardous materials including paints, thinners, chemicals or related waste materials,
5. Uncontrolled dewatering discharges, equipment and/or vehicle wash waters,
6. Sanitary waste, trash, debris, or other waste products
7. Wastewater from wet saw machinery,
8. Other pollutants that degrade water quality or pose a threat to human health or the environment.

Furthermore, I agree to notify Fort Bend County immediately of any issue caused by or identified by:

[^0]that is believed to be an immediate threat to human health or the environment.

Printed Name

Title

BELKNAP ROAD PAVEMENT AND DRAINAGE IMPROVEMENTS
 WEST BELLFORT
 TO 300 FEET NORTH OF HARRIS COUNTY LINE

TABLE OF CONTENTS

TABLE OF CONTENTS

SHEET SECTION

3 BID FORM
X SPEC LIST

X SUMMARY OF WOK
X GEOTECHNICAL REPORT

BELKNAP ROAD PAVEMENT AND

 DRAINAGE IMPROVEMENTS WEST BELLFORT TO 300 FEET NORTH OF HARRIS COUNTY LINE

The following Specifications have been chosen as applicable to this project.

CIVIL WORK

Harris County Specifications

Item No.		Description
100	TxDOT	Preparing Right-Of-Way
102		Clearing And Grubbing
104		Remove Old Concrete
110	TxDOT	Excavation
130		Borrow
162		Sodding for Erosion Control
164		Seeding And Erosion Control Blanket
220		Lime Treatment Stabilized Subgrade
221		Hydrated Lime and Lime Slurry
360		Concrete Pavement
416	TxDOT	Drill Shaft Foundations
420	TxDOT	Concrete Substructures
421	HC	Hydraulic Cement Concrete
423	TxDOT	Retaining Walls
425	TxDOT	Precast Prestressed Concrete Structural Members
427	TxDOT	Surface Finishes for Concrete
429	HC	Trench Safety System
433	HC	Cement Stabilized Sand (6" Thick)
450	HC	Railing
460	HC	Reinforced Concrete Pipe
463	HC	Safety End Treatment
465	HC	Concrete Manholes and Junction Boxes
466	HC	Inlets
471	HC	Precast Concrete Manhole and Junction Boxes
472	HC	Inlets
473	HC	Adjusting Manholes and Inlets
491	HC	Reinforced Concrete Slope Paving

\qquad

Harris County Specifications

Item No.		Description
495	HC	Removing Old Structures
500	HC	Miscellaneous Construction
506		BIODEG EROSN CONT LOGS (INSTL) (8")
516	HC	Flex Beam Guardrail (12 Gauge) Including Mowing Strip
530	HC	Concrete, Curb, concrete Curb and Gutter, Sidewalk and Driveways
531	TxDOT	Sidewalks
536	HC	Concrete Medians and Directional Islands
540	HC	Remove And Dispose Of Existing Asphaltic Surface And Base Material (All Depths)
550	HC	Remove and Salvage Fence (All Types)
561	HC	Video Recording Construction
618	TxDOT	Conduit
620	TxDOT	Electrical Conductors
621	TxDOT	Tray Cable
624	TxDOT	Ground Boxes
660	HC	Reflectorized Pavement Markings
663	HC	Traffic Buttons and Pavement Markers
664	HC	Reflectorized Pavement Marking Type II-C-R (4")
665	HC	Work Zone Pavement Markings
671	HC	Traffic Control
673	HC	Constructing Detours (8" Black Base)
674	HC	Eliminate Existing Pavement Marking \& Marker
680	TxDOT	Highway Traffic Signals
682	TxDOT	Vehicle and Pedestrain Signal Heads
684	TxDOT	Traffic signal Cables
687	TxDOT	Pedestal Pole Assemblies
688	TxDOT	Pedestrian Detectors and Vehicle Loop Detectors

\qquad

Harris County Specifications

Item No.		Description
696	HC	Barricade
713	HC	Reinforced Filter Fabric Barrier (60% of unit cost for furnish and installation and 40% of unit cost for removal)
719	HC	Cleaning and Sealing Joints and Cracks (Concrete Pavement)
724	HC	Stabilized Construction Access (Type 1-Rock; 60% of unit cost for furnish and installation, and 40\% of unit cost for reval))
750	HC	Rock Filter Dam (Type 2; 60\% of unit cost for furnish and installation, and 40\% of unit cost for removal)
751	TxDOT	Landscape Maintenance
6001	TxDOT	BBU system (EXTERNAL BATT CABINET)
686	TxDOT	Taffic Signal Pole Assemblies (Steel)
628	TxDOT	Electrical Services
DWG	HC	Offset Drainage (All Pipes and All Sizes)
SS901	HC	Detectable Warning 2' Wide (Red Brick Truncated Dome)

\qquad

GEOTECHNICAL ENGINEERING STUDY

FOR

PROJECT 2-11- BELKNAP ROAD FORT BEND COUNTY PRECINCT 2 FORT BEND COUNTY, TEXAS

RE: Geotechnical Engineering Study
 2017 Mobility Bond Program
 Fort Bend County Precinct 2
 Project 2-11 - Belknap Road
 From West Bellfort Boulevard to Harris County Line Fort Bend County, Texas

Dear Mr. Bhatti:
Raba Kistner Consultants, Inc. (RKCI) is pleased to submit the final report of our Geotechnical Engineering Study for the above-referenced project. This study was performed in accordance with RKCI Proposal No. PHA18-051-00, dated March 20, 2018. Written authorization to proceed with this study was received by our office via subcontract agreement on June 5,2018 . The purpose of this study was to explore subsurface conditions within the limits of the subject project and to provide foundation and pavement recommendations for the design and construction of a new bridge structure, rigid pavement and associated storm drainage.

The following report contains our design recommendations and considerations based on our current understanding of the design tolerances and pavement loads. If any of these parameters change, there may be alternatives for value engineering of the pavement systems, and RKCI recommends that a meeting be held with EJES, Inc. (CLIENT) and the design team to evaluate these alternatives.

We appreciate the opportunity to be of professional service to you on this project and look forward to receiving your comments. Should you have any questions about the information presented in this report, please call.

Very truly yours,
RABA KISTNER CONSULTANTS, INC.

John D. Brown, P.E. Manager, Geotechnical Services

MH/JDB/dar
Attachments
Copies Submitted: Above (1-Electronic)

For

PROJECT 2-11 - BELKNAP ROAD

FORT BEND COUNTY PRECINCT 2 FORT BEND COUNTY, TEXAS

Prepared for

EJES, INC.
Houston, Texas

Prepared by

RABA KISTNER CONSULTANTS, INC.
Houston, Texas

PROJECT NO. AHA18-045-00

August 14, 2018

TABLE OF CONTENTS

INTRODUCTION 1
PROJECT DESCRIPTION 1
LIMITATIONS 1
BORING AND LABORATORY TESTS 2
GENERAL SITE CONDITIONS 3
SITE DESCRIPTION 3
GEOLOGY 3
SEISMIC COEFFICIENTS 4
STRATIGRAPHY 4
SIEVE ANALYSIS 5
EXISTING PAVEMENT 5
GROUNDWATER 5
CORROSIVITY POTENTIAL 6
Corrosion of Steel 6
Degradation of Concrete 7
FOUNDATION RECOMMENDATIONS 8
DRILLED SHAFTS AND DRIVEN PILES 8
LATERAL LOAD ANALYSES 10
FOUNDATION SETTLEMENTS 11
DRILLED SHAFT CONSTRUCTION RECOMMENDATIONS 11
UNDERGROUND UTILITY RECOMMENDATIONS 12
BEDDING AND BACKFILL 12
Bedding 12
Foundation 12
Materials 12
Backfill 13
PAVEMENT SUBGRADE PREPARATION 13
GENERAL 13
SITE PREPARATION 13
FILL PLACEMENT 13
LIME TREATMENT OF COHESIVE SUBGRADE 14
PAVEMENT CONSTRUCTION AND DESIGN RECOMMENDATIONS 14
RIGID PAVEMENT DESIGN GUIDELINES 14
CONCRETE PAVEMENT REINFORCEMENT 15
CONCRETE PAVEMENT JOINT REQUIREMENTS 15
PAVEMENT CONSTRUCTION CONSIDERATIONS 15
SITE PREPARATION 15
DRAINAGE CONSIDERATIONS 15
PORTLAND CEMENT CONCRETE 16
CONSTRUCTION RELATED SERVICES 16
CONSTRUCTION MATERIALS TESTING AND OBSERVATION SERVICES. 16
BUDGETING FOR CONSTRUCTION TESTING 17
ATTACHMENTS
Site/Boring Location Map Log of Boring Key to Terms and Symbols Results of Soil Sample Analyses
Important Information About Your Geotechnical Engineering Report Appendix A WinCore Data

INTRODUCTION

Raba Kistner Consultants, Inc. (RKCI) has completed the authorized subsurface exploration and pavement thickness design and construction recommendations for the proposed existing Belknap Road in Fort Bend County, Texas. This report briefly describes the procedures utilized during this study and presents our findings along with our recommendations for bridge foundations, pavement thickness design and construction considerations.

PROJECT DESCRIPTION

The overall project scope includes a study, design, and bid phase engineering services to be provided by CLIENT to develop the project's PS\&E package for the reconstruction of an approximately 4,450 -foot long, existing 2-lane asphalt roadway without shoulders into a new, 4-lane concrete pavement boulevard with associated curb \& gutter and storm drainage project to be located along Belknap Road, From West Bellfort Boulevard to the Harris County line. The project will also include new bridge structures (dual bridge) over Keegan's Bayou.

The purpose of our geotechnical engineering study will be to determine subsurface conditions along the existing road alignment and to develop geotechnical engineering recommendations for the design of new rigid pavement and storm drainage (anticipated trench depths to be about 15 ft to 20 ft below grade), as well as to provide foundation recommendations for a new bridge structure over Keegan's Bayou. The Equivalent Single Axle Load (ESAL) value will be calculated based on Ft. Bend County's standard pavement design consisting of 8 inches of concrete underlain by 8 inches of lime-treated subgrade.

LIMITATIONS

This engineering report has been prepared in accordance with accepted Geotechnical Engineering practices in the Houston area by Geotechnical firms conducting similar work under similar circumstances and is meant for the use of the CLIENT and its representatives for design purposes. This report may not contain sufficient information for purposes of other parties or other uses and is not intended for use in determining construction means and methods.

The recommendations submitted in this report are based on the data obtained from eleven borings drilled at the designated work site and our understanding of the project information provided to us by the CLIENT. If the project information described in this report is incorrect, is altered, or if new information is available, we should be retained to review and modify our recommendations.

This report may not reflect the actual variations of the subsurface conditions across the site. The nature and extent of variations across the site may not become evident until construction commences. The construction process itself may also alter subsurface conditions. If variations appear evident at the time of construction, it may be necessary to reevaluate our recommendations after performing on-site observations and tests to establish the engineering impact of the variations.

The scope of our Geotechnical Engineering Study does not include an environmental assessment of the air, soil, rock, or water conditions either on or adjacent to the site. No environmental opinions are
presented in this report. RKCI's scope of work does not include the investigation, detection, or design related to the prevention of any biological pollutants. The term "biological pollutants" includes, but is not limited to, mold, fungi, spores, bacteria, and viruses, and the byproduct of any such biological organisms.

BORING AND LABORATORY TESTS

Subsurface conditions at the site were evaluated by 11 borings (designated as B-1 through B-11) drilled at the locations shown on the Boring Location Map, Figure 1. The boring locations are approximate and were located in the field by an $\mathbf{R K C l}$ representative by using a measuring tape, pacing, and reference to known landmarks. The GPS coordinates at the boring locations, as shown on Figure 1 and on the boring logs, are approximate and are referenced to Google Earth. The coordinates are shown on the Boring Location Map and on the boring logs.

Existing pavement at the boring locations was cored with a 6-inch diameter core barrel in order to measure existing pavement section thickness and to access the underlying soils. A listing of the existing pavement thickness and composition of subgrade immediately beneath pavement at the borehole locations is presented in the table under the proceeding report subsection entitled "Existing Pavement Structures".

Pavement borings B-3 through B-11 were spaced at approximately $500-\mathrm{ft}$ intervals along the roadway alignment and drilled to a depth of $20-\mathrm{ft}$ below the ground surface elevation existing at the time of our study using a buggy-mounted drilling rig. Bridge borings B-1 and B-2 were located on the north and south sides, respectively, of Keegan's Bayou and completed to depths of 100 feet each. The borings were drilled utilizing a straight flight auger and mud rotary and were backfilled with the auger cuttings generated during the drilling activities. The core holes in the pavement were then sealed with bitumen. During drilling operations, the following samples were collected:

Type of Sample	Number Collected
Undisturbed Shelby Tube (ST)	59
Split-Spoon w/ Standard Penetration Test (SPT)	3
Grab Sample	47

The ST and SPT samples were obtained in general accordance with accepted standard practices. The SPT results are noted as "blows per foot" on the boring logs. The term "blows per foot" refers to the number of blows by a 30 -inch free falling 140 - lb hammer required for 12 -inches of penetration into the subsurface materials. Grab samples were obtained from the auger cuttings generated during the drilling activities. Representative portions of the samples were sealed in containers to reduce moisture loss, labeled, packaged, and transported to our laboratory for subsequent testing and classification.

The Texas Cone Penetrometer (TCP) was used in Borings B-1 and B-2 (100-ft deep bridge borings), in general accordance with the Texas Department of Transportation (TxDOT) Tex-132-E. soil samples for laboratory testing purposes were collected from borings B-1 and B-2 by utilizing Shelby tube sampling techniques or from the auger cuttings (grab samples) in between each TCP sampling event. Representative portions of the samples were sealed, identified, packaged, and transported to our laboratory for subsequent testing and classification.

In the laboratory, each sample was evaluated and visually classified by a member of our Geotechnical Engineering staff in general accordance with the Unified Soil Classification System (USCS). The geotechnical engineering properties of the strata were evaluated by the laboratory tests tabulated in the table on the following page:

Type of Test	Number Conducted
Natural Moisture Content	109
Atterberg Limits	41
Percent Passing a No. 200 Sieve	42
Sieve Analysis including Hydrometer	2
Unconfined Compression	8
Corrosivity (Including pH, Electrical Resistivity, and Sulfate and Chloride Content Determinations)	1

With the exception of the corrosivity laboratory test results (including pH , electrical resistivity, and chloride and sulfate content determinations) and sieve analysis test results, the laboratory tests are presented in graphical or numerical form on the boring logs illustrated on Figures 2 through 12. A key to the classification of terms and symbols used on the logs is presented on Figure 13. The results of the laboratory and field testing are also tabulated on Figure 14 for ease of reference. The particle size distribution curves are presented on Figure 15.

The corrosion potential of the subsurface soils to concrete and uncoated steel was preliminarily evaluated by conducting laboratory analyses (pH , electrical resistivity, and sulfate and chloride content tests) on a selected specimen. These tests were conducted on an in-situ soil sample obtained from the subgrade soils within the proposed building footprint area. The laboratory test results are presented and discussed in a subsequent section of this report.

Samples will be retained in our laboratory for 30 days after submittal of this report. Other arrangements may be provided at the request of the CLIENT.

GENERAL SITE CONDITIONS

SITE DESCRIPTION

The project site is currently two-lane asphalt pavement without shoulders.

GEOLOGY

The Bureau of Economic Geology, Geologic Atlas of Texas, Houston Sheet (Revised 1982) shows the subject site to be located on the Beaumont Formation. The Beaumont Formation is the youngest coastparalleling Pleistocene unit in the Texas Gulf Coast. Most of the Beaumont Formation was deposited as an overlapping group of fluvial or deltaic plains by ancestors of modern streams now draining into the Gulf of Mexico. The Beaumont formation is comprised of clay, silt, and sand; includes mainly stream channel, point-bar, natural levee, backswamp, and to a lesser extent coastal marsh and mud-flat deposits;
concretions of calcium carbonate, iron oxide, and iron-manganese oxides in zone of weathering; surface almost featureless, characterized by relict river channels shown by meander patterns and pimple mounds on meanderbelt ridges, separated by areas of low, relatively smooth, featureless backswamp deposits without pimple mounds; formation thickness is +/-100 ft.

SEISMIC COEFFICIENTS

On the basis of the soil borings conducted for this investigation, the upper 100 feet of soil may be characterized as stiff soil and a Class D Site Class Definition (Chapter 20 of ASCE 7) has been assigned to this site.

On the basis of the United States Geological Survey (USGS) website ${ }^{1}$ which utilizes the International Building Code (IBC) and U.S. Seismic Design Maps to develop seismic design parameters, the following seismic considerations are associated with this site.

```
- }\mp@subsup{S}{\textrm{s}}{}=0.070\textrm{g
- }\mp@subsup{S}{1}{}=0.037\textrm{g
- }\mp@subsup{S}{ms}{}=0.113
- }\mp@subsup{S}{m1}{}=0.090
- S SDS 0.075g
- }\mp@subsup{S}{D1}{}=0.060
```

Based on the parameters listed above as well as Tables 1613.3.5(1) and 1613.3.5(2) of the 2012 IBC, the Seismic Design Category for both short period and 1 second response accelerations is A. As part of the assumptions required to complete the calculations, a Risk Category of "I or II or III" was selected.

STRATIGRAPHY

The subsurface conditions encountered at the boring locations are shown on the boring logs, Figures 2 through 6. The boring logs should be consulted for boring specific (detailed) stratigraphic information. These boring logs represent our interpretation of the subsurface conditions based on the field logs, visual examination of field samples by our personnel, and laboratory test results of selected field samples. Each stratum has been designated by grouping soils that possess similar physical and engineering characteristics. The lines designating the interfaces between strata on the boring logs represent approximate boundaries. Transitions between strata may be gradual.

The subsurface stratigraphy at this site can be broken in to two generalized stratum, as follows:

Stratum I soils consist of cohesive, low plasticity to high plasticity, very soft to hard consistency, reddish brown to yellowish brown to brown to gray, sandy lean clay (CL), lean clay w/ sand (CL), sandy fat clay (CH), fat clay and fat clay with sand (CH). Roots, sand and silt seams, and ferrous and calcareous nodules were noted at varying depths within the stratum I soils. Measured moisture contents range from 9 to 39 percent. Measured plasticity indices (PI) range from 8 to 62 . Based on grain size analyses, the

[^1]percentage of fines (percent passing a No. 200 sieve) within this stratum ranges from 58 to 97 percent. Based on unconfined compression test results, undrained shear strength values range from 0.19 to 1.09 tsf. The tested samples measured dry unit weights ranging from 83 to 102 pcf. Texas Cone Penetration (TCP) values ranging from 7 to over 100 blows per foot were recorded. The stratum I clays were the predominant soils encountered during drilling. Boring B-11 is comprised entirely of stratum I soils.

Stratum II soils consist of granular, loose to dense relative density, brown to reddish brown to yellowish brown to gray, cohesionless poorly graded sand with silt (SP-SM), poorly graded sand with gravel (SP), and silty sand (SM), and semi-cohesive, low plasticity, silty clayey sand (SC-SM) and clayey sand (SC). Measured moisture contents range from 4 to 28 percent. Measured plasticity indices (PI) range from 5 to 31. Based on grain size analysis, the percentage of fines (percent passing a No. 200 sieve) within this stratum ranges from 11 to 49 percent. SPT N-values ranging from 9 to 14 blows per foot were recorded. Texas Cone Penetration (TCP) values ranging from 17 to 87 blows per foot were recorded within stratum II soils.

SIEVE ANALYSIS

Sieve analysis was performed on soil samples recovered from depths of 18 -ft and 28 -ft in Bridge borings B-1 and B-2, respectively. The particle size distribution curves are presented on Figure 15.

EXISTING PAVEMENT

The existing pavement was cored at borings B-3 through B-10. The measured pavement section, thicknesses and the soil types immediately beneath the pavements are tabulated as follows:

Boring No.	Pavement Thickness and Description	Soil Immediately Beneath The Pavement
B-3	6-in. Asphalt	Clayey Sand
B-4	8-in. Asphalt	Sandy Lean Clay
B-5	$10-\mathrm{in}$. Asphalt	Clayey Sand
B-6	$10-\mathrm{in}$. Asphalt	Poorly Graded Sand w/ Silt
B-7	$10-\mathrm{in}$. Asphalt	Clayey Sand
B-8	$10-\mathrm{in}$. Asphalt	Clayey Sand
B-9	$10-\mathrm{in} Asphalt$.	Clayey Sand
B-10	8-in. Asphalt	Poorly Graded Sand w/ Gravel

GROUNDWATER

Groundwater was observed in bridge borings B-1 and B-2 during drilling. Groundwater depth readings for these borings are listed in the following table:

Boring No.	Depth Groundwater Encountered (ft)	Water Level Depth after 15 Minutes (ft)
B-1	13.4	12.7
B-2	11.9	11.0

Groundwater was not observed in the remaining borings, either during or immediately upon completion of the drilling operations. These borings remained dry during the field exploration phase.

It should be noted that depth-to-water levels may fluctuate at any given time due to seasonal variations in rainfall and surface runoff, especially during extended periods of heavy rainfall or dry weather. Surface runoff may be controlled using temporary earthen berms or swales and conventional sump-andpump dewatering methods.

CORROSIVITY POTENTIAL

Steel and concrete elements in contact with soil are subject to degradation from corrosion or chemical attack. The corrosivity characteristics of the upper soils were preliminarily evaluated using pH , electrical resistivity, sulfate content, and chloride content laboratory tests.

Corrosion of Steel

The measurable soil properties that indicate the corrosion potential for steel in contact with soil are soil pH , chloride ion concentration, and soil electrical resistivity. Corrosion of steel is most likely to occur in environments that have chloride ions, even in low concentrations, very low or very high pH , and/or low resistivity.

The following table presents general guidelines concerning the corrosion potential of a soil as a function of chloride ion concentration, pH , and electrical resistivity. Each of the columns on this table should be used independently of the others when evaluating corrosion potential. For instance, it is not necessary to have an electrical resistivity of less than 1,000 ohm- cm and a pH of less than 4.0 to indicate a Very High potential for corrosion.

Soil Corrosion Potential

Electrical Resistivity Ohm-cm			
$<1,000$	Chloride Content, ppm	$\mathbf{p H}^{(2)}$	Corrosion Potential
$1,000-3,000$	>500		Very High
$3,000-10,000$	<500	>4 or >10	High
$>10,000$			Moderate

(1)After Roberge, 2000
(2)After DOE-HDBK-1015/1-93

Soil pH , chloride and sulfate content, and electrical resistivity laboratory tests were conducted on a relatively undisturbed cohesive soil sample obtained from bridge Boring B-1 from a depth of about 0-ft to 2-ft below the ground surface elevation existing at the time of our study. The laboratory test results are shown in the table below.

Chemical and Electrical Resistivity Test Results

Boring No.	Sampling Interval (ft)	Soil Type	$\mathbf{p H}$	Ion Concentration Chloride (ppm)	Ion Concentration Sulfate (ppm)	Electrical Resistivity (ohm-cm)
B-1	$0-2$	Sandy Fat Clay	7.92	BRL* *	BRL*	3920

*Below Recordable Limit

Based on the chemical and electrical resistivity laboratory test results and the general guidelines from the table titled "Soil Corrosion Potential", the shallow natural soils appear to have a "Moderate" potential for corrosion of unprotected steel.

Degradation of Concrete

The degradation of concrete is caused by chemical agents in the soil or groundwater that react with concrete to either dissolve the cement paste or precipitate larger compounds which cause cracking and flaking. The concentration of water-soluble sulfates in the soils is a good indicator of the potential for chemical attack of concrete. Sulfate concentrations in soil can be used to evaluate the need for protection of concrete based on the general guidelines shown in the table on the following page.

Sulfate Attack Potential

Sulfate lon Concentration, ppm or mg/kg	${\text { Aggressiveness }{ }^{(1)}}^{\text {(1) }}$
$>20,000$	Very Severe
2,000 to 20,000	Severe
1,000 to 2,000	Moderate
$<1,000$	Negligible

(1)ACl 318-05/ACI 318R-05

On the basis of soil sulfate concentration data shown on the table titled "Chemical and Electrical Resistivity Test Results" and the general guidelines from the "Sulfate Attack Potential" table, the soils have a "negligible" potential for attacking concrete. Based on the measured soil sulfate concentration, the American Concrete Institute (ACI) Committee Report 201.2R indicates that special requirements for sulfate resistance are not needed (that is, American Society for Testing and Materials (ASTM) C 150 Types I and II are applicable).

Degradation of concrete can also be advanced by the aggregates selected for the concrete mixtures. Alkali-silica reactivity (ASR), a chemical reaction between Portland cement concrete and certain aggregates, can directly cause expansion damage in concrete structures or can expedite other reactions that in turn cause damage, such as rebar corrosion.

Three requirements must be met for ASR expansion to occur: (1) reactive forms of silica or silicate in the aggregate; (2) sufficient alkali (sodium and potassium) primarily from the cement; and (3) sufficiently available moisture in the concrete. If one of the three requirements is not met, expansion due to ASR cannot occur. The concrete aggregates should be checked for ASR characteristics.

FOUNDATION RECOMMENDATIONS

It is our understanding that the project will also include new bridge structures (dual bridge) over Keegan's Bayou. The new bridge will be supported on drilled, cast-in-place concrete shafts. Recommendations regarding drilled shaft and driven pile design and construction are given in the following sections.

DRILLED SHAFTS AND DRIVEN PILES

Drilled shaft capacities for various diameter shafts were computed using the procedures described in the TxDOT Geotechnical Manual dated March 2018. Drilled shafts may be designed for both skin friction and end bearing.

The design capacities are based on having a complete soil cover around the full length of the shaft. It is Houston District practice to disregard the frictional resistance of the soils in the upper 10-ft depth (from finished grade). Soil cover for the pilings to support the bridge crossing Keegan's Bayou should be disregarded to the potential scour depth. Scour depth at the ditch crossing is not known at this time.

It is Houston District practice to disregard end bearing for drilled shafts less than or equal to $24-\mathrm{in}$. in diameter. Allowable unit end bearing for drilled shafts is assumed to be a maximum of 2 tsf for shaft diameters between 24-in. and 48-in. End bearing for drilled shaft diameter sizes greater than 48-in. may be computed as described in the TxDOT Geotechnical Manual. Allowable end bearing for drilled shaft diameter sizes greater than 48 -in. is limited to 5.3 tsf due to restriction placed on TCP values when computing allowable end bearing capacity. The following tables summarize the recommended allowable end bearing values for drilled shaft foundations for the two proposed bridge structures:

Allowable Drilled Shaft End Bearing Values for B-1

Boring No.	Depth (ft)	Drilled Shaft Diameter Sizes Between 24 and 48 inches ${ }^{(*)}$	Drilled Shaft Diameter Sizes Greater Than 48 inches
B-1	0-5	Ignored	Ignored
	5-15	0.9 tsf	0.9 tsf
	15-33	2.0 tsf	2.9 tsf
	33-41	0.7 tsf	0.7 tsf
	41-55	1.4 tsf	1.4 tsf
	55-80	2.0 tsf	2.7 tsf
	80-90	1.8 tsf	1.8 tsf
	90-100	1.7 tsf	1.7 tsf

[^2]Allowable Drilled Shaft End Bearing Values for B-2

Boring No.	Depth (ft)	Drilled Shaft Diameter Sizes Between $\mathbf{2 4}$ and $\mathbf{4 8}$ inches ${ }^{(*)}$	Drilled Shaft Diameter Sizes Greater Than $\mathbf{4 8}$ inches
$\mathrm{B}-2$	$0-5$	Ignored	Ignored
	$5-7$	0.7 tsf	0.7 tsf
	$7-13$	1.4 tsf	1.4 tsf
	$13-18$	1.7 tsf	1.7 tsf
	$18-30$	2.0 tsf	2.7 tsf
	$30-41$	$21-73$	2.0 tsf
	$73-97$	2.0 tsf	2.6 tsf
	$97-100$	2.0 tsf	2.2 tsf

(7) End bearing is limited to 2 tsf for drilled shaft diameter sizes between 24 and 48 inches.

The allowable unit skin friction plots for the proposed bridges, presented in the TxDOT developed WinCore version 3.1 format similar to TxDOT Form 1190 for drilled shaft and driven pile foundation design, are presented in Appendix A. The capacities are for gravity loads on individual foundation units with a minimum center-to-center spacing of three shaft diameters. The soil design parameters were developed based on laboratory undrained triaxial shear strength test data in clay soils and the TxDOT cone penetrometer blow counts. A soil reduction factor of 0.7 was used to obtain the skin friction curves for the drilled shafts. The following tables summarize the recommended allowable unit skin friction values for drilled shaft foundations for the two proposed bridge structures:

Allowable Drilled Shaft Skin Friction Values for B-1

Boring No.	Depth (ft)	Soil Factor	TCP N Value	TCP Unit Friction (tsf)	Accumulative Friction (t / f)
B-1	0-2.5	50	7	0.10	0.25
	2.5-8	50	24	0.34	2.08
	8-13	80	17	0.15	2.82
	13-16	80	23	0.20	3.43
	16-21	80	49	0.43	5.57
	21-26	80	55	0.48	7.98
	26-31	80	72	0.63	11.13
	31-38	80	74	0.65	15.66
	38-41	50	13	0.18	16.21
	41-46	50	32	0.45	18.45
	46-53	50	400	1.25	27.20
	53-56	80	27	0.24	27.91
	56-63	80	77	0.67	32.62
	63-66	50	53	0.74	34.85
	66-71	50	58	0.81	38.91
	71-76	50	53	0.74	42.62
	76-81	50	54	0.76	46.40
	81-86	50	62	0.87	50.74
	86-91	50	34	0.48	53.12
	91-96	50	34	0.48	55.50
	96-90	50	32	0.45	57.29

Allowable Drilled Shaft Skin Friction Values for B-2

Boring No.	Depth (ft)	Soil Factor	TCP N Value	TCP Unit Friction (tsf)	Accumulative Friction (t / f)
B-2	0-2.5	50	19	0.27	0.68
	2.5-6.5	50	14	0.20	1.45
	6.5-13	50	26	0.36	3.82
	13-18	80	31	0.27	5.17
	18-21	80	45	0.39	6.36
	21-26	80	70	0.61	9.42
	26-31	80	64	0.56	12.22
	31-38	80	51	0.45	15.34
	38-41	50	41	0.57	17.06
	41-46	50	58	0.81	21.12
	46-51	50	54	0.76	24.90
	51-58	50	51	0.71	29.90
	58-63	80	47	0.41	31.96
	63-66	50	58	0.81	34.39
	66-71	50	70	0.88	38.77
	71-76	50	50	0.70	42.27
	76-81	50	61	0.85	46.54
	81-86	50	44	0.62	49.62
	86-91	50	46	0.64	52.84
	91-96	50	42	0.59	55.78
	96-90	50	51	0.71	58.64

The aspect ratio of a drilled shaft, or its length divided by its diameter (L/D), should not exceed about 30 (O'Neill and Reese, 1999, pg 11). If allowable end bearing values are added to the allowable friction values to design the size of a drilled shaft, then the maximum drilled shaft embedment depth should be limited to within three drilled shaft diameters above the maximum depth of the borings.

Scour depth was not known while calculating drilled shaft and pile capacities for the bridge over Keegan's Bayou, and should be taken into consideration by the project engineer during the design process.

LATERAL LOAD ANALYSES

It is necessary to design the foundation unit to resist both vertical and lateral loads. The foundations will be subjected to lateral loading from wind forces and other sources. The lateral forces generated from those sources will be taken by mobilization of resistance in the surrounding soils as the unit deflects, and by the structural capacity of the foundation section.

We understand that lateral loading for the proposed bridge structures is not of a concern. We will be glad to provide lateral load capacities to aid the design when the foundation depth, type, and size have been selected if this becomes a design concern.

FOUNDATION SETTLEMENTS

Post-construction vertical movements due to design loads are anticipated to be less than 0.5 in . for drilled shafts installed using proper construction techniques. Movement consists of elastic shortening of the foundation unit and deformation at the foundation tip.

DRILLED SHAFT CONSTRUCTION RECOMMENDATIONS

Drilled shaft construction and installation should follow TxDOT Standard Specifications for Construction and Maintenance of Highways, Streets and Bridges, June 2004 Edition, Item 416. The ACI 336.1-01 Specifications can be used in the absence of TxDOT Specifications. The TxDOT Specifications shall always supersede any other specifications. Presented below are a few specific recommendations.

1. Drilled shaft excavations should be inspected for verticality and side sloughing. Verticality is specified at one inch in ten feet of the shaft length, and should be checked to the full depth of dry augering prior to introducing drilling mud.
2. Slurry should contain four to eight percent by weight of bentonite additive and should satisfy the slurry specification set forth in TxDOT Standard Specification Item 416.2 or ACI 336.1-01 Table 2.6. Note that the ACl requirements are more stringent than TxDOT Standard Specification Item 416.2. The slurry specifications are required to assure suspension of detritus from the drilling operations, and to assure adequate cleaning of the slurry prior to concreting. Cleaning of the slurry is important to prevent deposition of detritus on reinforcement cages and ensure that inclusions of detritus will not be formed within the concrete mass.
3. Before placing concrete, the shaft bottoms should be cleaned out with a drilling bucket in order to remove any sediments which may not be displaced by the concrete. The shaft bottoms should be cleaned with a "clean-out" bucket until rotation on the bottom without crowd (i.e. penetration under force) produces little spoil. Probing after clean-out is essential to verify the condition of the base of the shaft.
4. Concrete should conform to the requirements of TxDOT Standard Specification Item 421 or ACl 336.1-01 Section 2.4.
5. Concrete placement should be accomplished as directed in TxDOT Standard Specification Item 416.3.F. The tremie pipe diameter should be at least eight times as large as the largest concrete aggregate size.
6. A computation of the final concrete volume for each shaft should be made. Shafts taking an unreasonably high or low volume of concrete should be cored to check their integrity.
7. If casing is used it should be pulled out slowly and smoothly with a vibratory hammer. The casing should always remain at least one foot below the level of the concrete during placement. Our analyses assume no casing will be left in place. We should be informed if casing would be left in place so we may provide revised shaft capacity calculations.

Shaft excavations should not be made within three shaft diameters (edge to edge) of shafts, which have been concreted within the last 24 hours. If it is deemed necessary to verify the design charts provided in Appendix A and B, then prior to the start of the construction, a load test may be performed on the selected drilled shaft type. The shaft subjected to the load test should be drilled to the design drilled shaft
tip elevation. The pile load test should be performed in accordance with TxDOT Standard Specification Item 405 and ASTM D 1143.

UNDERGROUND UTILITY RECOMMENDATIONS

It is our understanding that new storm sewer lines will be installed to replace the existing roadside ditches. The following sections provide our recommendations for bedding and backfill for new storm sewer installation.

BEDDING AND BACKFILL

Bedding and backfill recommendations for the proposed water, sanitary, and storm sewer lines should be in accordance with HCPID-ED criteria items 400, 402, and 433.

Bedding

Bedding is the material used along the bottom of the trench that provides uniform support for the buried pipe. Bedding may be compacted or uncompacted, depending on the recommendations of the design engineer. Bedding that is uncompacted allows the pipe to sink into the bedding soil allowing for a more uniform distribution of stress on the bottom of the pipe.

Under installed conditions, the vertical load on a pipe is distributed over its width and the reaction is distributed in accordance with the type of bedding. When the pipe strength used in design has been determined by controlled laboratory testing, a factor must be applied that relates the in-place supporting strength to that obtained in the lab. We recommend the pipe designer use a bedding factor to account for the width of the soil reaction at the bottom of the pipe.

Foundation

The bottoms of trench excavations should expose strong competent soils and should be dry and free of loose, soft, or disturbed soil. If fill soils are encountered at the base of trench excavations, their competency should be verified through probing and density testing. Soft, wet, weak, or deleterious materials should be over-excavated to expose strong competent soils.

At locations where soft or weak soils extend for some depth, overexcavation to stronger soils may prove infeasible and/or uneconomical. In the event of these areas are encountered, we recommend that the bottom of the trench excavation be over-excavated by 1 to 2 feet, and replaced with an open-graded aggregate that will allow for drainage of water, as well as provide a stable working platform.

Materials

The bedding materials should be selected to ensure the most uniform contact between the pipe and the foundation as possible. Granular soils such as bank run sand, concrete sand, gem sand, pea gravel, crushed limestone, or cement treated sand may be used as the bedding material. It is essential that
bedding materials are placed (i.e., thickness of layer and compactive effort) in conformance with HCPIDED criteria with respect to soil type and compactive effort.

Backfill

We recommend backfill materials and placement be in accordance with HCPID-ED item 400 - Structural Excavation and Backfill. In addition, backfill for trenches should not be started until the waterline or sewerline is properly bedded in accordance with the above recommendations. Materials removed from the trench excavations will generally be suitable as backfill above the bedding, provided they are not saturated and do not contain organic matter, debris, or other deleterious material.

To reduce potential settlements of the ground surface resulting from consolidation of the trench backfill, we recommend that trench backfill be placed in 6-in. thick loose lifts and compacted to at least 95 percent of the maximum dry density as determined by ASTM D 698. We further recommend that utility trenches that cross or encroach upon the proposed roadways be backfilled with cement treated sand to within 18in. of pavement subgrade, followed by select fill placed and compacted as per HCPID-ED requirements.

PAVEMENT SUBGRADE PREPARATION

GENERAL

It is our understanding that the existing two-lane asphalt roadway with open ditches will be converted into a four-lane concrete roadway with curbs along both sides.

SITE PREPARATION

The asphalt roadway should be stripped of all asphalt and other deleterious materials. After stripping and grubbing, the exposed subgrade should be thoroughly proofrolled in order to locate and densify any weak, compressible zones. A minimum of 5 passes of a fully-loaded dump truck or a similar heavily-loaded piece of construction equipment should be used for planning purposes. Proofrolling operations should be observed by the Geotechnical Engineer or his representative to document subgrade condition and preparation. Weak or soft areas identified during proofrolling should be removed and replaced with suitable, compacted on-site clays, free of organics, oversized materials, and degradable or deleterious materials.

FILL PLACEMENT

Fill required for grading at roadways may be on site material or imported gravel base material, free of organic matter and excessive silt. Fill should be placed at maximum 8-in. thick loose lifts and compacted to at least 95% of the maximum dry density at moisture content within two percentage points of the optimum moisture content. The laboratory-measured maximum dry density and optimum moisture content should be determined in accordance with standard Proctor test (ASTM D 698).

LIME TREATMENT OF COHESIVE SUBGRADE

In cohesive soils, lime may be used to treat the subgrade soils. Lime treatment of the cohesive subgrade soils should be in accordance with the Harris County Specifications, Item 220. A sufficient quantity of hydrated lime should be mixed with the subgrade soils to reduce the soil-lime mixture plasticity index to 10 or less. For estimating purposes, we recommend that 6 to 7 percent hydrated lime by dry soil weight be assumed for treatment. Prior to construction, we recommend that the optimum lime content of the subgrade soils be determined by appropriate laboratory testing. Lime-treated subgrade soils should be compacted to a minimum of 95 percent of the maximum dry density at a moisture content within the range of optimum moisture content to 3 percentage points above the optimum moisture content as determined by ASTM D698.

Recommendations provided herein include the use of lime treatment as a method to improve pavement subgrade conditions. We also recommend performing additional laboratory testing to determine the concentration of soluble sulfates in the subgrade soils, in order to investigate the potential for a recently reported adverse reaction to lime in certain sulfate-containing soils. The adverse reaction, referred to as sulfate-induced heave, has been known to cause cohesive subgrade soils to swell in short periods of time, resulting in pavement heaving and possible failure.

PAVEMENT CONSTRUCTION AND DESIGN RECOMMENDATIONS

RIGID PAVEMENT DESIGN GUIDELINES

It is our understanding that Belknap Road is classified as a Principal Thoroughfare, based on the county's standard pavement design, rigid pavement thickness of 8-inches with 8-inches of lime stabilized subgrade. Pavement design criteria should be in accordance with "Regulations of Harris County, Texas for the Approval and Acceptance of Infrastructure" Section 7 - Paving, amended May 1, 2011. Minimum design pavement section thickness for 30-year design life is presented in table 7-2 of the HCPID-ED infrastructure design manual and tabulated as follows.

Roadway Classification	Calculated 18-kip ESAL Application	Concrete Pavement Thickness, in.	28-day Compressive Strength, \mathbf{f}^{\prime} c, psi	Minimum Required Depth of Stabilization, in.
Principal Thoroughfare	4 million	8^{2}	4,500	8

Reinforcing for Local, Collector, and Thoroughfares shall meet the size, strength, and spacing shown in table 7.3 in "Regulations of Harris County, Texas for the Approval and Acceptance of Infrastructure" Section 7 - Paving.

Rigid pavement design was performed in accordance with the AASHTO Guide for Design of Pavement Structures, 1993. The parameters used for estimating 18-kip ESAL for 8-inch thick concrete pavement over 8 -inch thick lime treated subgrade are listed in the following table.

[^3]| Design Parameter | Value |
| :--- | :---: |
| Load Transfer Coefficient (J) | 3.2 |
| Drainage coefficient $\left(\mathrm{C}_{\mathrm{d}}\right)$ | 1.2 |
| Modulus of Rupture of Pavement $\left(\mathrm{S}^{\prime} \mathrm{c}\right)$ | 710 psi |
| Standard Deviation - Performance Prediction (So) | 0.35 |
| Reliability (R) | 95% |
| Initial Serviceability Index $\left(\mathrm{p}_{\mathrm{o}}\right)$ | 4.5 |
| Terminal Serviceability Index $\left(\mathrm{p}_{\mathrm{t}}\right)$ | 2.5 |
| Elastic Modulus of Pavement $\left(\mathrm{E}_{\mathrm{c}}\right)$ | $4.2 \times 10^{6} \mathrm{psi}$ |
| Effective Modulus of Subgrade Reaction (k) | 100 pci |

CONCRETE PAVEMENT REINFORCEMENT

Reinforcement steel should consist of reinforcing bars running in both directions. HCED Concrete Pavement Details, Precinct 3, require \#5 bars spaced 9-inches, center-to-center in the longitudinal direction and \#5 bars spaced 36-inches, center-to-center in the transverse direction.

Horizontal dowels or saw cutting to expose existing steel are required to create a minimum 24 diameter overlap of reinforcing steel when making a connection of a proposed street to an existing concrete street or drive. When an existing street has no exposed steel, 1-inch diameter dowels of 30 -inches in length should be embedded 15 -inches into the existing pavement, epoxied, and spaced at 24 -inches, center-to-center.

CONCRETE PAVEMENT JOINT REQUIREMENTS

Transverse expansion and contraction (sawed) joints should have a maximum spacing of 160 and 20 feet, respectively. Longitudinal joint spacing for $25-\mathrm{ft}$ wide pavement (two lanes) is 12 feet.

PAVEMENT CONSTRUCTION CONSIDERATIONS

SITE PREPARATION

The pavement areas should be prepared in accordance with the recommendations presented in the Subgrade Preparation section of this report.

DRAINAGE CONSIDERATIONS

As with any soil-supported structure, the satisfactory performance of a pavement system is contingent on the provision of adequate surface and subsurface drainage. Insufficient drainage which allows saturation of the pavement subgrade and/or the supporting granular pavement materials will greatly reduce the performance and service life of the pavement systems.

Surface and subsurface drainage considerations crucial to the performance of pavements at this site include (but are not limited to) the following:

- any known natural or man-made subsurface seepage at the site which may occur at sufficiently shallow depths as to influence moisture contents within the subgrade should be intercepted by drainage ditches or below grade French drains;
- final site grading should eliminate isolated depressions adjacent to curbs which may allow surface water to pond and infiltrate into the underlying soils. Curbs should be installed to sufficient depth to reduce infiltration of water beneath the curbs, and;
- pavement surfaces should be maintained to help reduce surface ponding and to provide rapid sealing of any developing cracks. These measures will help reduce infiltration of surface water downward through the pavement section.

PORTLAND CEMENT CONCRETE

Concrete shall meet the requirements outlined in "Harris County Specifications, Item No. 360". The PCC used for pavements should be air-entrained to result in a 4 percent plus/minus 1 percent air, a maximum slump of 6 inches, and a minimum 28 -day compressive strength of 4,500 psi. A liquid membrane-forming curing compound should be applied as soon as practical after broom finishing the concrete surface. The curing compound will help reduce the loss of water from the concrete. The reduction in the rapid loss in water will help reduce shrinkage cracking of the concrete.

CONSTRUCTION RELATED SERVICES

CONSTRUCTION MATERIALS TESTING AND OBSERVATION SERVICES

As presented in the attachment to this report, Important Information About Your Geotechnical Engineering Report, subsurface conditions can vary across a project site. The conditions described in this report are based on interpolations derived from a limited number of data points. Variations will be encountered during construction, and only the geotechnical design engineer will be able to determine if these conditions are different than those assumed for design.

Construction problems resulting from variations or anomalies in subsurface conditions are among the most prevalent on construction projects and often lead to delays, changes, cost overruns, and disputes. These variations and anomalies can best be addressed if the geotechnical engineer of record, $\mathbf{R K C l}$, is retained to perform construction observation and testing services during the construction of the project. This is because:

- $\quad \mathbf{R K C I}$ has an intimate understanding of the geotechnical engineering report's findings and recommendations. RKCI understands how the report should be interpreted and can provide such interpretations on site, on the CLIENT's behalf.
- \quad RKCI knows what subsurface conditions are anticipated at the site.
- $\quad \mathbf{R K C I}$ is familiar with the goals of the CLIENT and project design professionals, having worked with them in the development of the geotechnical work scope. This enables RKCI to suggest remedial measures (when needed) which help meet the CLIENT's and the design teams' requirements.
- $\quad \mathbf{R K C I}$ has a vested interest in client satisfaction, and thus assigns qualified personnel whose principal concern is client satisfaction. This concern is exhibited by the manner in which contractors' work is tested, evaluated and reported, and in selection of alternative approaches when such may become necessary.
- $\quad \mathbf{R K C l}$ cannot be held accountable for problems which result due to misinterpretation of our findings or recommendations when we are not on hand to provide the interpretation which is required.

BUDGETING FOR CONSTRUCTION TESTING

Appropriate budgets need to be developed for the required construction testing and observation activities. At the appropriate time before construction, we advise that RKCI and the project designers meet and jointly develop the testing budgets, as well as review the testing specifications as it pertains to this project. Once the construction testing budget and scope of work are finalized, we encourage a preconstruction meeting with the selected contractor to review the scope of work to make sure it is consistent with the construction means and methods proposed by the contractor. RKCI looks forward to the opportunity to provide continued support on this project, and would welcome the opportunity to meet with the Project Team to develop both a scope and budget for these services.

The following figures are attached and complete this report:

Figure 1
Figures 2 through 12
Figure 13
Figure 14
Figure 15
Appendix A

Site/Boring Location Map
Logs of Borings
Key to Terms and Symbols
Results of Soil Sample Analyses
Sieve Analysis
WinCore Data

ATTACHMENTS

LOG OF BORING NO. B-3
Project 2-11 - Belknap Road
R A B A
KISTNER Belknap Road Sugarland, TX

LOG OF BORING NO. B-5
Project 2-11 - Belknap Road
R A B A
KISTNER
Belknap Road
Sugarland, TX
LOCATION: N 29.67116; W 95.62333

LOG OF BORING NO. B-6
Project 2-11 - Belknap Road
R A B A
KISTNER
Belknap Road
Sugarland, TX
LOCATION: N 29.66969; W 95.62323

LOG OF BORING NO. B-7
Project 2-11 - Belknap Road
R A B A
KISTNER
Belknap Road Sugarland, TX
LOCATION: N 29.66814; W 95.62323

LOG OF BORING NO. B-9
Project 2-11 - Belknap Road

- R A B A
KISTNER
Belknap Road
Sugarland, TX
LOCATION: N 29.66512; W 95.62313

LOG OF BORING NO. B-10
Project 2-11 - Belknap Road
R A B A
KISTNER
Belknap Road
Sugarland, TX

KEY TO TERMS AND SYMBOLS

MATERIAL TYPES

WELL CONSTRUCTION AND PLUGGING MATERIALS

SAMPLE TYPES

SHELBY TUBE
\square
\vdots
\vdots
\square SPLIT BARREL

DISTURBED

BENTONITE
\square
 CEMENT GROUT

BENTONITE \& CUTTINGS

CONCRETE/CEMENT

CUTTINGS

SAND
GRAVEL
 Volclay

STRENGTH TEST TYPES

NOTE: VALUES SYMBOLIZED ON BORING LOGS REPRESENT SHEAR STRENGTHS UNLESS OTHERWISE NOTED

KEY TO TERMS AND SYMBOLS (CONT'D)

TERMINOLOGY

Terms used in this report to describe soils with regard to their consistency or conditions are in general accordance with the discussion presented in Article 45 of SOILS MECHANICS IN ENGINEERING PRACTICE, Terzaghi and Peck, John Wiley \& Sons, Inc., 1967, using the most reliable information available from the field and laboratory investigations. Terms used for describing soils according to their texture or grain size distribution are in accordance with the UNIFIED SOIL CLASSIFICATION SYSTEM, as described in American Society for Testing and Materials D2487-06 and D2488-00, Volume 04.08, Soil and Rock; Dimension Stone; Geosynthetics; 2005.

The depths shown on the boring logs are not exact, and have been estimated to the nearest half-foot. Depth measurements may be presented in a manner that implies greater precision in depth measurement, i.e 6.71 meters. The reader should understand and interpret this information only within the stated half-foot tolerance on depth measurements.

> RELATIVE DENSITY COHESIVE STRENGTH PLASTICITY

Penetration Resistance Blows per ft	Relative Density	Resistance Blows per ft	Consistency	Cohesion TSF	Plasticity Index	Degree of Plasticity
$4-4$	Very Loose	$0-2$	Very Soft	$0-0.125$	$0-5$	None
$10-30$	Loose	$2-4$	Soft	$0.125-0.25$	$5-10$	Low
$30-50$	Medium Dense	$4-8$	Firm	$0.25-0.5$	$10-20$	Moderate
>50	Very Dense	$8-15$	Stiff	$0.5-1.0$	$20-40$	Plastic
		$15-30$	Very Stiff	$1.0-2.0$	>40	Highly Plastic
		>30	Hard	>2.0		

ABBREVIATIONS

$B=$ Benzene	Qam, Qas, Qal = Quaternary Alluvium	Kef = Eagle Ford Shale
T = Toluene	Qat = Low Terrace Deposits	Kbu = Buda Limestone
$E=$ Ethylbenzene	Qbc $=$ Beaumont Formation	Kdr = Del Rio Clay
$X=$ Total Xylenes	Qt = Fluviatile Terrace Deposits	Kft $=$ Fort Terrett Member
BTEX $=$ Total BTEX	Qao = Seymour Formation	Kgt = Georgetown Formation
TPH = Total Petroleum Hydrocarbons	s Qle $=$ Leona Formation	Kep $=$ Person Formation
ND = Not Detected	Q-Tu = Uvalde Gravel	Kek $=$ Kainer Formation
NA = Not Analyzed	Ewi $=$ Wilcox Formation	Kes = Escondido Formation
NR = Not Recorded/No Recovery	Emi $=$ Midway Group	Kew = Walnut Formation
OVA = Organic Vapor Analyzer	$\mathrm{Mc}=$ Catahoula Formation	$\mathrm{Kgr}=$ Glen Rose Formation
ppm = Parts Per Million	$\mathrm{El}=$ Laredo Formation	Kgru = Upper Glen Rose Formation
	Kknm $=\underset{\text { Marl }}{\text { Navarro }}$ Group and Marlbrook	$\begin{aligned} \text { Kgrl } & =\text { Lower Glen Rose Formation } \\ \text { Kh } & =\text { Hensell Sand } \end{aligned}$
	Kpg = Pecan Gap Chalk	
	Kau $=$ Austin Chalk	

KEY TO TERMS AND SYMBOLS (CONT'D)

TERMINOLOGY

SOIL STRUCTURE

Slickensided	Having planes of weakness that appear slick and glossy. Fissured
Containing shrinkage or relief cracks, often filled with fine sand or silt; usually more or less vertical.	
Pocket	Inclusion of material of different texture that is smaller than the diameter of the sample.
Parting	Inclusion less than $1 / 8$ inch thick extending through the sample.
Seam	Inclusion $1 / 8$ inch to 3 inches thick extending through the sample.
Layer	Inclusion greater than 3 inches thick extending through the sample.
Laminated	Soil sample composed of alternating partings or seams of different soil type.
Interlayered	Soil sample composed of alternating layers of different soil type.
Intermixed	Soil sample composed of pockets of different soil type and layered or laminated structure is not evident.
Calcareous	Having appreciable quantities of carbonate.
Carbonate	Having more than 50\% carbonate content.

SAMPLING METHODS

RELATIVELY UNDISTURBED SAMPLING

Cohesive soil samples are to be collected using three-inch thin-walled tubes in general accordance with the Standard Practice for Thin-Walled Tube Sampling of Soils (ASTM D1587) and granular soil samples are to be collected using two-inch split-barrel samplers in general accordance with the Standard Method for Penetration Test and Split-Barrel Sampling of Soils (ASTM D1586). Cohesive soil samples may be extruded on-site when appropriate handling and storage techniques maintain sample integrity and moisture content.

STANDARD PENETRATION TEST (SPT)

A 2-in.-OD, 1-3/8-in.-ID split spoon sampler is driven 1.5 ft into undisturbed soil with a 140 -pound hammer free falling 30 in . After the sampler is seated 6 in . into undisturbed soil, the number of blows required to drive the sampler the last 12 in . is the Standard Penetration Resistance or " N " value, which is recorded as blows per foot as described below.

SPLIT-BARREL SAMPLER DRIVING RECORD

Blows Per Foot

25 50/7" Description

Ref/3 ... 50 blows drove sampler 3 inches during initial 6 -inch seating interval
NOTE: To avoid damage to sampling tools, driving is limited to 50 blows during or after seating interval.

RESULTS OF SOIL SAMPLE ANALYSES

PROJECT NAME: Project 2-11 - Belknap Road
Belknap Road
Sugarland, TX
FILE NAME: AHA18-045-00.GPJ
7/20/2018

Boring No.	Sample Depth (ft)	Blows per ft	Water Content (\%)	Liquid Limit	Plastic Limit	Plasticity Index	USCS	Dry Unit Weight (pcf)	$\%-200$ Sieve	Shear Strength (tsf)	Strength Test
B-1	0.0 to 1.5	7	22								
	2.0 to 4.0		17	58	18	40	CH		60		
	4.0 to 5.5	24	18								
	6.0 to 8.0		15								
	8.0 to 9.5	17	14	32	17	15	SC		42		
	9.5 to 11.0										
	13.0 to 14.5	23	21						6		
	14.5 to 16.0										
	18.0 to 19.5	49	21						25		
	19.5 to 21.0										
	23.0 to 24.5	55	24								
	24.5 to 26.0										
	28.0 to 29.5	72	20						10		
	29.5 to 31.0										
	33.0 to 34.5	74	20								
	34.5 to 36.0										
	38.0 to 39.5	13									
	39.5 to 41.0		27	64	30	34	CH		95	2.25	PP
	43.0 to 44.5	32									
	44.5 to 46.0		19							2.00	PP
	48.0 to 49.5	100/3	28								
	49.5 to 51.0										
	53.0 to 54.5	27	19						6		
	54.5 to 56.0										
	58.0 to 59.5	77	28	25	14	11	SC		40		
	59.5 to 61.0										
	63.0 to 64.5	53	19								
	64.5 to 66.0										
	68.0 to 69.5	58									
	69.5 to 71.0		20	27	19	8	CL		85	1.25	PP
	73.0 to 74.5	53	29								
	74.5 to 76.0										
	78.0 to 79.5	54	19	50	21	29	CH		88		
	79.5 to 81.0										
	83.0 to 84.5	62	23	64	27	37					
	84.5 to 86.0										
	88.0 to 89.5	34	26								
	89.5 to 91.0										
	93.0 to 94.5	34	25								

PP = Pocket Penetrometer \quad TV = Torvane $\quad U C=$ Unconfined Compression $\quad F V=$ Field Vane UU = Unconsolidated Undrained Triaxial

RESULTS OF SOIL SAMPLE ANALYSES

PROJECT NAME: Project 2-11 - Belknap Road
Belknap Road
Sugarland, TX
FILE NAME: AHA18-045-00.GPJ
7/20/2018

Boring No.	Sample Depth (ft)	Blows per ft	Water Content (\%)	Liquid Limit	Plastic Limit	Plasticity Index	USCS	Dry Unit Weight (pcf)	$\%-200$ Sieve	Shear Strength (tsf)	Strength Test
B-1	94.5 to 96.0									2.25	PP
	98.0 to 99.5	32	26								
	99.5 to 101.0									2.25	PP
B-2	0.0 to 1.5	19	15	46	16	30	CL		59		
	2.0 to 4.0		14								
	4.0 to 5.5	14	14								
	6.0 to 8.0		20	65	20	45					
	8.0 to 9.5	26	18								
	9.5 to 11.0										
	13.0 to 14.5	31	24	24	19	5	SC-SM		30		
	14.5 to 16.0										
	18.0 to 19.5	45	22						7		
	19.5 to 21.0										
	23.0 to 24.5	70	10								
	24.5 to 26.0										
	28.0 to 29.5	64	23						20		
	29.5 to 31.0										
	33.0 to 34.5	51	28								
	34.5 to 36.0										
	38.0 to 39.5	41	20	48	21	27	CL		68		
	39.5 to 41.0										
	43.0 to 44.5	58									
	44.5 to 46.0		19							2.00	PP
	48.0 to 49.5	54	27								
	49.5 to 51.0										
	53.0 to 54.5	61	31	35	18	17	CL		68		
	54.5 to 56.0										
	58.0 to 59.5	87	25						49		
	59.5 to 61.0										
	63.0 to 64.5	58	17	32	17	15	CL		83		
	64.5 to 66.0										
	68.0 to 69.5	70									
	69.5 to 71.0		20							1.00	PP
	73.0 to 74.5	50	39	65	25	40	CH		90		
	74.5 to 76.0										
	78.0 to 79.5	61	26								
	79.5 to 81.0										
	83.0 to 84.5	44									
	84.5 to 86.0		24	66	28	38				2.00	PP

PP = Pocket Penetrometer \quad TV = Torvane $\quad U C=$ Unconfined Compression $\quad F V=$ Field Vane UU = Unconsolidated Undrained Triaxial

RESULTS OF SOIL SAMPLE ANALYSES

PROJECT NAME: Project 2-11 - Belknap Road
Belknap Road
Sugarland, TX
FILE NAME: AHA18-045-00.GPJ
7/20/2018

PP = Pocket Penetrometer \quad TV = Torvane $\quad U C=$ Unconfined Compression \quad FV = Field Vane UU = Unconsolidated Undrained Triaxial

RESULTS OF SOIL SAMPLE ANALYSES

PROJECT NAME: Project 2-11 - Belknap Road
Belknap Road
Sugarland, TX
FILE NAME: AHA18-045-00.GPJ
7/20/2018

PP = Pocket Penetrometer \quad TV = Torvane $\quad U C=$ Unconfined Compression $\quad F V=$ Field Vane UU = Unconsolidated Undrained Triaxial

RESULTS OF SOIL SAMPLE ANALYSES

PROJECT NAME: Project 2-11 - Belknap Road
Belknap Road
Sugarland, TX
FILE NAME: AHA18-045-00.GPJ
7/20/2018

PP = Pocket Penetrometer \quad TV = Torvane $\quad U C=$ Unconfined Compression $\quad F V=$ Field Vane UU = Unconsolidated Undrained Triaxial
CU = Consolidated Undrained Triaxial

APPENDIX A - WINCORE FIGURES

WinCore Version 3.3

County	Fort Bend County
Highway	Belknap Road
CSJ	

Hole	B1	District	Houston
Structure	Bridge	Date	$6 / 22 / 2018$
Station		Grnd. Elev.	83.00 ft
Offset		GW Elev.	$\mathbf{7 2 . 0 0} \mathbf{f t}$

Remarks:

Any ground water elevation information provided on this boring log is representative of conditions existing on the day and for the specific location where this information was collected. The actual groundwater elevation may fluctuate due to time, climatic conditions, and/or construction activity.

Driller

DRILLING LOG

WinCore Version 3.3

County	Fort Bend County	Hole	B1
Highway	Belknap Road	Structure	Bridge
CSJ		Station	
		Offset	

District	Houston
Date	$6 / 22 / 2018$
Grnd. Elev.	83.00 ft
GW Elev.	$\mathbf{7 2 . 0 0} \mathrm{ft}$

Remarks:

Any ground water elevation information provided on this boring log is representative of conditions existing on the day and for the specific location where this information was collected. The actual groundwater elevation may fluctuate due to time, climatic conditions, and/or construction activity.

Driller:

WinCore Version 3.3

County	Fort Bend County
Highway	Belknap Road
CSJ	

Hole	B2	District	Houston
Structure	Bridge	Date	$6 / 24 / 2018$
Station		Grnd. Elev.	83.00 ft
Offset		GW Elev.	$\mathbf{7 0 . 3 0} \mathrm{ft}$

Remarks:

Any ground water elevation information provided on this boring log is representative of conditions existing on the day and for the specific location where this information was collected. The actual groundwater elevation may fluctuate due to time, climatic conditions, and/or construction activity.

Driller:
Logger:
Organization:

WinCore Version 3.3

County	Fort Bend County	Hole	B2
Highway	Belknap Road	Structure	Bridge
CSJ		Station	
		Offset	

District	Houston
Date	$6 / 24 / 2018$
Grnd. Elev.	83.00 ft
GW Elev.	$\mathbf{7 0 . 3 0} \mathrm{ft}$

Remarks:

Any ground water elevation information provided on this boring log is representative of conditions existing on the day and for the specific location where this information was collected. The actual groundwater elevation may fluctuate due to time, climatic conditions, and/or construction activity.

Driller:

POINT BEARING DESIGN

WinCore	County	Fort Bend County	Hole	B1	District	Houston
Version 3.3	Highway	Belknap Road	Structure	Bridge	Date	$6 / 22 / 2018$
	Control		Station		Grnd. Elev.	83.00 ft
		Offset		GW Elev.	72.00 ft	

Diameters Below Tip Checked =
2
TCP Bearing Values Used

POINT BEARING DESIGN

WinCore	County	Fort Bend County	Hole	B1	District	Houston
Version 3.3	Highway	Belknap Road	Structure	Bridge	Date	$6 / 22 / 2018$
	Control		Station		Grnd. Elev.	83.00 ft
		Offset		GW Elev.	72.00 ft	

Diameters Below Tip Checked =
2
TCP Bearing Values Used

POINT BEARING DESIGN

WinCore	County	Fort Bend County	Hole	B2	District	Houston
Version 3.3	Highway	Belknap Road	Structure	Bridge	Date	$6 / 24 / 2018$
	Control		Station		Grnd. Elev.	83.00 ft
		Offset		GW Elev.	70.30 ft	

Diameters Below Tip Checked =
2
TCP Bearing Values Used

POINT BEARING DESIGN

WinCore	County	Fort Bend County	Hole	B2	District	Houston
Version 3.3	Highway	Belknap Road	Structure	Bridge	Date	$6 / 24 / 2018$
	Control		Station		Grnd. Elev.	83.00 ft
		Offset		GW Elev.	70.30 ft	

Diameters Below Tip Checked =
2
TCP Bearing Values Used

SKIN FRICTION DESIGN

SKIN FRICTION DESIGN

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.
While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a civil engineer may not fulfill the needs of a constructor - a construction contractor - or even another civil engineer. Because each geotechnical- engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. No one except you should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. And no one - not even you - should apply this report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical-engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

Geotechnical Engineers Base Each Report on a Unique Set of Project-Specific Factors

Geotechnical engineers consider many unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk-management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical-engineering report that was:

- not prepared for you;
- not prepared for your project;
- not prepared for the specific site explored; or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical-engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a lightindustrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, always inform your geotechnical engineer of project changes-even minor ones-and request an
assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

Subsurface Conditions Can Change

A geotechnical-engineering report is based on conditions that existed at the time the geotechnical engineer performed the study. Do not rely on a geotechnical-engineering report whose adequacy may have been affected by: the passage of time; man-made events, such as construction on or adjacent to the site; or natural events, such as floods, droughts, earthquakes, or groundwater fluctuations. Contact the geotechnical engineer before applying this report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ - sometimes significantly - from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide geotechnical-construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the confirmation-dependent recommendations included in your report. Confirmationdependent recommendations are not final, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's confirmation-dependent recommendations if that engineer does not perform the geotechnical-construction observation required to confirm the recommendations' applicability.

A Geotechnical-Engineering Report Is Subject to Misinterpretation
 Other design-team members' misinterpretation of geotechnical-engineering reports has resulted in costly

problems. Confront that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Constructors can also misinterpret a geotechnical-engineering report. Confront that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing geotechnical construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical-engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make constructors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give constructors the complete geotechnical-engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise constructors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/ or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure constructors have sufficient time to perform additional study. Only then might you be in a position to give constructors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and constructors fail to recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help
others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

Environmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. Do not rely on an environmental report prepared for someone else.

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold-prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, many mold- prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical- engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your GBC-Member Geotechnical Engineer for Additional Assistance

Membership in the Geotechnical Business Council of the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you GBC-Member geotechnical engineer for more information.

[^4]
ENGINEERING•ENVIRONMENTAL•INFRASTRUCTURE•PROJECT CONTROL

Austin, TX	San Antonio, TX	Lake Worth, FL
Brownsville, TX	Houston, TX	Lincoln, NE
Dallas, TX	McAllen, TX	Salt Lake City, UT
Freeport, TX	New Braunfels, TX	Mexico

Fort bend county engineering departuent
 BELKNAP ROAD PAVEMENT AND DRAINAGE IMPROVEMENTS WEST BELLFORT
 PROJECT NO. 17211

GRADY PRESTAGE

ANDY MEYERS
COMMISSIONER PRECINCT
DEXTER L. MCCOY
COMMISSIONER PRECINCT 4

PROJECT NOTES

- THIS PROJECT WAS INITIALLY UNDER CONTRACT BETWEEN FORT BEND COUNTY AS

 TH THE FIELD.

a. TOPOCRAPHIC SURVEYYNG b. EXISTING UTILITIES

2. THE INFORMATION SHOWN HEREON FOR OLD RICHMOND ROAD (WEST OF BELKNAP
 THE INFORMAIII.
RICHMOND ROAD.
3. THE INFORMATION SHOWN HEREON FOR THE DRIVEWAY (LEFT) AT STA 49+48.2 AND THE DRIVEWAY (LEET) AT STA 52+40.04 WAS TAEEN FROM IN ORMTION
 AND HAS NOT BEEN FIELD VERIFIED. THE CONTRAC
FIED ADUSTMENT FFR DEVIATONS BETWEENTHE IN
AND TE ACTUAL CONSTRUCTION ON THE SCHOOL SITE.
 AD JACENT DEVELOPMENT ENGINEERS AND WERE NOT CONSTRUCTED AT THE TIME
OF THESE PLANS. THE CONTRACTOR MAY HAVE TO MAKE FIELD ADJUSTMENTS FOR

4. THE LOCATION OF THE EXISTING POWER POLES MAY NOT BE ADEQUAELY SIDEWALK LOCATIONS TO AVOID RELOCATION OF THE EXISTING POWER POLES
THIS ADJSTMEN WORK WILL NOT BE PID FOR DIRETLY BUT WIL BE
5. THE LIMITS AND TYPE OF CONSTRUCTION NNRTH OF THE PROPOSED BRIDGES AR CONT INGENT UPON THE RE-NEGOTIATION OF AN ENCROACHMENT AGREEMEN
BETWEEN FOT ERND COUNY AD CENTEROIN ERERGY IF THE ENCRACHEN BETWEEN FORT BEND
AREEENENT IS RE-N

FROM STA $54+94.24$ TO STA $56+98.62$

LEGEND
8" reinforced concrete pavement
(B) 8" Lime treated subgrade
(c) concrete curb
(D) $41 / 2$ " reinforced concrete sidewalk
(c) metal beam guardrai
(E) CAST IN Place $\begin{aligned} & \text { CONCRETE RETAINing wall }\end{aligned}$
(6) block soding
(-4) 10" reinforced concrete pavement

- these quantities are for narrow build SECTION. SEE
BUILD SECTION.
THE WORK TO BE PERFORMED AND THE RESULTING CUANTITIES WILL DEPEND UPON WHETHER THE
NAROW BUILO OPTION OR THE WIDE BUILD OPTION ARE CHOSEN BY THE COUNTY.

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS bellfort blvd to oak bend forest d

CONSTRUCTION

. Fort bend county must be invited to the pre-construction meeting.
2. CONTRACTOR SHALL NOTIFY FORT BEND COUNTY ENGINEERING DEPARTMENT
48 HOURS PRIOR TO COMMENCNG CONSTRUCTION ANO 48 HOUR NOTICE TO ANY CONSTRUCTION ACTIVITY
CONSTRUCTIONQFBCTX.GOV.
3. CONTRACTOR IS RESPONSIBLE FOR OBTANNG ALL PERMTS REQURED FROM
FORT BEND COUNTY PRIOR TO COMMENING CONSTRUCTION OF ANY IMPROVEMENTS WTHIN COUNTY ROAD RIGHT OF WArS.

- all paving improvements shal be constructed naco
 CURRENTLY AMENDED.

5. AlL road midths, curb radil and curb algument shown indicates
6. A continuous longitudinal reinforcing bar shall be used in the curbs.
all Concrete pavement shall be 5 $5 / 2$ sack cement with a minimu
 SPACING OF 60 FEET.
7. ALL WEATHER ACCESS TO ALL Existing streets and driveways shall be
8. $4^{4 "} \times 12^{\prime \prime}$ REINFORCED CONCRETE CURB SHALL BE PLACED IN FRONT OF SINGLE
9. CURB HEADERS ARE REQURED AT, CURB CONNECTIONS TO HANDICAP RAMPS, WTH
NO CONSTRUCTION JONT WIHIN 5' OF RAMPS.
10. GUIDELINES ARE SET FORIH IN THE TEXAS MANUAL ON UNIFORM TRAFIC
CONTROL DEVICES', AS CURRENTLY AMENDED, SHALL BE OBSERVED. THE
 SIGNING, STRPING AND
BOTH DAY ANO NIGHT.
11. ALL R1-1 STOP SIINS SHALL BE A MINMUM OF 3 SG"X3"" WTH DIAMOND
GRADE SHEETN PER TEXAS MANUAL ON UNFORM TRAFFIC CONTROL DEVICES
12. STREET NAME SIGNAGE SHALL BE ON A 9" HIGH SIGN FLAT BLADE W/REFLECTIVE
GREEN BACKGROUND. STREET NAMES SHALL BE UPPER AND LOWERCASE LETTERING
 MINMOM. THE LEETERS SHAL BE REFLECTIV
SHALL BE MONTED ON STLO SIIN POST

13. THE PROJECT AND ALL PARTS THEREOF SHALL BE SUBJECT TO INSPECTION FROM INSPECTIONE BY INSPECTORS DESIGNATED BY FORT BEND COUNTY. NO SUCH
 ANY OF THE WORK AS NOT IN ACCORDANCE WTHH THE DRAWINGS AND ANY PROVISON RF THIS PROUECT SHALL BE CONSTRUED NO IMPLY AN ACCEETANC OF SUCH WOR
HEREUNDER.
14. STABLIZED SUBGRADE: DETERMNE THE THICKNNSS OF THE STABLIZED SUBGRADE

15. CONTRACTOR TO PROVIDE MONTHLY SCHEDULE UPDATES AND WEEKLY LOOK AHEAD.
note: fort bend county notes supersede any conflicting notes.

GENERAL

Ihe contractor shall field verify existing conditions before beginning construction.
2. THE CONTRACTOR IS RESPONSIBLE FOR PROVIDNG SECURITY TO PROTECT THE PROJECT SITE,
CONTRACTOR PROPERY, EOUPMENT. AND WORK.
3. THE CONTRACTOR IS RESPONSIBLE FOR CLEANING STREETS OF CONSTRUCTION DIRT AND
4. THE CONDITION OF THE ROAD AND/OR RGGHT-OF-WAY, UPON COMPLETION OF THE JOB SHAL
BE AS GOOD AS OR BETER THAN PRIOR TO STARTNG WORK.
5. PRIOR TO CONSTRUCTION, THE CONTRACTOR, ALONG WITH CONCURRENCE FROM THE FIELD
6. THE CONTRACTOR SHALL NOTIFY ALL PROPERTY OWNERS A MINIMUM OF 24 HOURS PRIOR To
BLOCKING DRIVEWAYS OR ENTERING UTLITY EASEMENTS.
7. TRAFIC INGRESS AND EGRESS FOR DRIVEWAYS AND PEDESTRIAN ACCESS FACILTIES SHALL BE
MAINTANED THROUGHOUT CONSTRUCTION WTTH ALL WEATHER SURFACES.
8. THE CONTRACTOR SHALL REMOVE ANY FENCES, POSTS, MALBOXES, PLANTERS, PERMANENT
TRASH CONTANERS, CUIVERTS, ETC. OR SECTONS THEREOF, THAT ENCROACH' WTHIN THE COUNTY'S RIGHT-OF-WAY. NOTE: PRIOR TO CONSTRUCTION, THE PROPERTY OWNER WAS PAID TO RELOCATE OR REPACE THESE TEMS OUTSIEE OF THE COUNTY'S RIGHT-OF-WAYY
IF THE OWNER HAS FALLED TO DO SO, THE CONTRACTOR WILL RELLACE THEM WTH THE MIMLUM LEVEL OF QUALITY NEEDED TO SECURE THE PROPERTY AND/OR MANTAN MAL
DELVERY IN THAT CASE. PAMMENT FOR THESE INSTALATIONS WLL BE INCLUDED AS EXTRA
WIN Work tems or as overruns to existing pay tems.
ANY DAMAGE CAUSED bY THE CONTRACTOR TO SUCH TEMS LOCATED OUTSIDE OF THE
COUNTY'S RIGHT-OF-WAY, SHALL BE REPLACED WITH LIKE-KIND OR BETTER AT THE COUNTY'S RIGHT-OF-WAY
CONTRACTOR'S EXPENSE
 refs, bushrs suru hi mo

9. Paved surfaces pavement markers and markings shall be protected from damage
10. IRON RODS DISTURBED DURING CONSTRUCTION ARE TO BE REPLACED BY A REGISTERED
PROFESSIONAL LAND SURVEYOR FOR THE ORIINAL PROPERIY OWNER AT NO SEPARATE PAY. CONSTRUCTION STAKKING WLL BE PROVIED BY THE CONTRACTOR, TWO COPIES OF STAKING
NOTES TO BE PROVIDED TO THE ENGINEER PRIOR TO CONSTRUCTION. THE COUNTY OR THE COUNTY'S SURVEYOR SHALL PROVIDE A BENCHMARK OR TEMPORARY
BENCHMARK AND SURVEY CONTROLS.
13. THE CONTRACTOR SHALL MAINAIN UPDATED RED-LINED RECORD DRAWINGS ON SIte For
INSPECTION BY THE ENGINEER.
14. mowing, maitenance, and clean-up of the project shall meet the requirement of
 SCOPE OF ACTIVITES WTHIN THE PROJECT LMITS.

16. IT IS THE CONTRACTOR'S RESPONSIBLITY TO STOCKPLLE NECESSARY MATERILL ON-SIE OR
AT A SECURED OFF-SIIE LOCATION AT NO ADOITONAL EXPENSE TO FORT BEND COUNTY.
 WHETHER FROM STORM SEWER,
BORROW IS BROUGHT ON-STEE.

18. THE FOLLOWING DETALS ARE MNMMM REQUREMENTS AND MAY BE SUPERSEDED BY
GEOTECHNILAL ENGNEER RECOMMENDATONS OR MORE SRRNGENT REQUREMENIS FROM THE GEOTECHNCAL ENGINEER RECOM
CTY'S ETJ PROJECT IS WTHIN.
19. pop up drains are not allowed in fort bend county right of way.
20. WHEN CONSTRUCTING TEMPORARY PAVEMENT ON OAK BEND FOREST DRIEE, THE CONTRACTOR IS RESPONSIBLE FOR COORDNATNG WTH THE WATER LINE OPERATOR (RANOY DAVLLA) AT
+1(B82)256-3411. THE CONTRACTOR SHALL USE STEEL PLATES ON TOP OF WATER VALVES FOR

TRAFFIC SIGNAL

 PLUNCHIST ITEMS, SHALL BE COMPLEEED PROR TT
UNLESS OTHERWIS REQURED BY THE CONTRACT.
2. THE CONTRACTOR SHALL MEET WITH THE FORT BEND COUNTY TRAFFIC SIINAL MAINTENANCE GROUPS

 PROGRESS AND ADEQUTE PREPARATIONS ARE NOT COMPLETE, THE PRE-"TURN ON"
WALK-THROUGH NSPECTON MEETING WLL BE POSTPONED TO ALOW ADEOUATE TIME FOR

 TRAFFIC SIGNAL
ESTABLISHED.

THE CONTRACTOR SHALL HAVE 10 DAYS FROM THE DATE THE TRAFFIC SIGNAL SYSTEM IS TURNED
ON TO COMPLETE ANY PUNCHLST ITEMS IDENTIFIED AT THE PRE-TURN ON" WALK-THROUGG

5. THE CONTRACTOR'S ATTENTION IS DRECTED TO STANDARD SPECIFICATION ITEM 1000, TRAFFIC SIGNAL ACTVATIIN OF TRAFFIC SIGNAL CONTROL SYSTEMS. THE PROUECT MANUAL MAY INCLUDE SPECIA
SPECIFICATONS AND/OR SPECCAL PROVIIONS RELATED TO PROPOSED TRAFFIC CONTROL SIGNAL

All signal alterations must be approved and coordinated through fbc engineerng and
Road $\&$ bridge.

TRAFFIC CONTROL

THE CONTRACTOR SHALL MAINTAIN AT LEAST ONE LANE OF TRAFFIC IN EACH
DIRECTION DURING WORKING HOURS EXCEPT DURING FLAGGING OPERATON
 requireo to direct traffic during lane closures.
4. Detours reoure prior approval of the fillo enineer and precinct. Detour
pLans, IF allowed must incluob appropriate oetour signace, public notice via

5. ONE DAY PRIOR TO THE IMPLEMENTATION OF A TRAFFIC CONTROL PLAN PHASE OR STEP,

6. TRAFFIC CONTROL PER THE CONTRACT IS REQURED FOR THE ENTIRE DURATION OF THE PROPERLY NSTALLED FOR LESS THAN A FULL MONTH SHAL BE BAEED ON A
PERCENTAGE BASS OF THE TIME INSTALEED. TRAFFIC CONTROL PAYMENTS TO THE

THE PURPOSE OF THE CONSTRUCTION SEQUENCE AND TRAFFIC HANDUNG OUTLINED HEREIN
IS TO DCUUENT A VABLE TOP THAT CAN BE UTIZED TO CONSRUCT TH PROUECT. IS

8. AlL temporary pavement markings on permanent pavement should be rpms or

TRAEFII PATTERN CHANGES REQURE CHANGEABLE MESSAGE BOARDS PLACED AT LEAST 2
WEEKS IN ADVANCE OF PROPOSED CHANGE. QUANITY, PLLCEMENT AND WOROING TBO BY
FBC.

TRAFFIC SIGNAL
ROADWAY.
2. FURNSHH BLACK HOUSING FOR VEHICLE SIGNALS WTH 12 -IN LENS AND BLACK BACKPLATES. TRAFFIC SIGNAL STRAN POLES AND MAST ARMS SHALL BE STANDARD GALVANIZED. SIIGNAL
POLES AND MAST ARMS SHALL BE POWDER-COATED IN BLACK POLES UNLESS OTHER ENTIT IS
PAYYG FOR UPGRADES.)
FUNNSHH VEEHICLE AND COUNTDOWN PEDESTRIAN SIGNALS WTH LIGHT EMITTING DIODE (LED) SIGNAL
IAMP UNITS.
5. SYMBOLIC PEDESTRAN SIGNAL HEAD SHALL BE LED AUDBLE PEDESTRAN AND 12 IN COUNTDOWN.
6. USE DIAMOND GRADE RETRORELECTVE SHEETNG FOR SIGNS MOUNTED UNDER OR ADJACENT TO TH

SICNAL HEADS.
FUUNSH SMB TYPE PEDESTRRAN COUNTDOWN SIGNALS. INSTALL USING MOUNTING HEIGHT IN ACCORDANCE WTH THE LATEST "TEXAS MANUAL ON UNIIORM CONTROL DEVCES."
FURNSH MATERALS NECESSARY TO INSTALL ACCESSIBLE PEDESTRIAN UNITS (SEE FBC APPROVED

ROUTC CABLE FOR LLUINAIRES (4/C No. 12 TRAY CABLE) TO THE SERVICE ENClOSURE. SEE
INSTAL FULL-ACTUATED. ETHERNET-CAPABLE CONTROLLER WITH INTERNAL TIME BASED COORDINATON
UNII ANO COMNUNCATOO IN A BASE NOUNTED CABINET. SEE FBC APPROVED TRAFFIC SIGNAL
UNI AND COMMUNCAION IN A BASE MOUNTED CABINET. SEE FBC APPROVED TRAFFIC SIGNAL
EOUPEMENT ITT.
LOCALE CONTROLERS, STEEL POLES, DETECTION ZONES AS APPROVED BY FORT BEND COUNTY IN
repair or replace pavement and sidewalks damaged by the contractor's forces during
CONSTRUCTION AT NO COST TO THE COUNTY.
CABLL. REQUIRED) TO PREVENT ABRASION TO SICNAL CABLE WHERE THE CABLE ENTERS THE UPPER PORTIO
RE THE SIGNAL POLE. Do not place sigwal heads over the roadway until all necessary materals are on hand 6. AS APTPOVED.

FROM THE ITEM OF INSTALLATION UNTL PLACING INTO OPERATINN. DO NOT USE BURLAPAL FACES
INSTALL A $5 / 8-$ IN (MINIUUM) EYE BOLT FOR THE POINT OF ATACHMENT BELOW THE SERVCC
ENTTANCE WEATHRHEAD FOR THE SERVICE DROP (120/240 VOLT SERVICE) TO STEL POLE.

22.
 NAME. THIS INCLLDEEES ALL POWER TO OPERATE THE SIINAL DURNG THE VARROUS PHASES OF
CONSTRUCTION AND DURING THE TEST PERIOD PRIOR TO ACCEPTANCE OF THE WORK BY FORT BEND
COUNTY.
24. INS

INSAL PEDESTRIAN SIGNAL POLES WITH SCREW-IN ANCHOR FOUNDATION.
SIGNNLS.
EXISTLNG STOD SIGNS AND SCHOLL CROSSING ASSEMBLLES AT THE INTERSECTION SHALL BE REMOVED
AND REURNED TO FORT BEND COUNTY. ALL EXISTING EQUPMENT THAT WILL NOT BE INSTALLED ON THE SIGNAL POLES AND/OR MAST ARMS
SHALL BE RETUNNE TO FORT BEND COUNTY.
8. AAL TRAFFIC SIINAL POLE FOUNEATION LOCATIONS SHALL BE APPROVED BY THE ENGINEER OR
REPRESNTATVE IN THE FIELD PROR TO DRLLING.

FURNSH VDED INAGING VEHCLLE DETECTION STSTEM (VIVOS) CABLE RECOMMENEED BY MANUFACTURER

30. THE LOCATON OF THE VVIVS DETECTION ZONE IS APPROXIMATE. THE EXACT LOCATION WLL BE
DETERMNED BY THE ENGINEER AND/OR FORT BEND COUNTY ROAD AND BRIOGE SIGNAL TECHNCIANS.

 THIS TIME. ANY EQUPMENT REQURED FOR SETUP
BE PROVIDED TO THE COUNTY UPON COMPLETION.

\longrightarrow -					
-					
FORT BEND COUNTY, TEXAS					
BELKNAP ROAD IMPROVEMENTS w BELLFORT BLVD TO OAK BEND FOREST DR TYPICAL SECTIONS EXISTING					
SHEET 1 OF 2 CNTY PROJ RPS PROJ * DATE SCALE SHEET NO					
	${ }^{008169}$ ORAWN QY				
			RPS		

ExISTING PAVEMENT
STRCTURE UNKNOWN
® haln_townew
80' typ! R.o. W. ${ }^{12^{\prime}}$

\qquad

PGL

TOWNE WEST BLVD
FROM BLVD STA 9+84.6

FROM STA $48+28.71$ TO STA $53+64.24$

(c) block soodinc
(①) 10" reinforced concrete pavement

SEE PROJeCt Notes for adoitional information.

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
W BELLFORT BLVD TO OAK BEND FOREST DR
TYPICAL SECTIONS

ROAD HORIZONTAL ALIGNMENTS

ellfort boulevard baseline

Chain HALN-BELLFORT Contains:
141 CUR HALN_BELLFORT_3 142
Beginning chain HALN-BELLFORT description
Point $141 \quad \mathrm{~N} \quad 13,805,680.3756 \mathrm{E} \quad 3,040,648.4000$ Sto $\quad 14+80.16$ Course from 141 to PC HALN_BELLFORT_3 S $77^{\circ} 51^{\prime} 33^{\prime \prime}$ E Dist 170.8471 $\underset{*--------*}{\text { Curve Data }}$

P. I. Stotion	18+23.11	N	13,805,608.2481	E	3,040,983.6814
Delito					
Tongent	172.1048				
Length	$\begin{array}{r}343.4216 \\ \text { 2 } 72.8700 \\ \hline\end{array}$				
External	2, 7 7.1341				
Leong Chord	343.0287				
P. C. Stotion	16+51.01		13, 805, 644.4441		3,040, 815.4259
${ }^{\text {P. }}$ C. C. . Station	19+94.43	N	13, 805, 600. 3028	E	$\begin{aligned} & 3,041155.6027 \\ & 3,041,251.2788 \end{aligned}$

Course from PT HALN_BELLFORT_3 to $142 \mathrm{~S} 87^{\circ} 21^{\prime} 14^{\prime \prime}$ E Dist 762.4854
Point 142
N $13,805,565.1027 \mathrm{E} \quad 3,041,917.2752$ Sto
27+56.91
$==================================$
Ending chain HALN-BELLFORT descrip H ion

BELKNAP ROAD BASELINE (CENTER

Choin HALN-BELKNAP contoins:
CENTEROOO1 CUR CENTEROOO2 CUR CENTEROOO3 CENTEROOO4
Beginning chain HALN BELKNAP description \qquad
Point CENTEROOO 1
N $13,805,597.7373 \mathrm{E} \quad 3,041,211.1163$ Sto
Course from CENTEROOO1 to PC CENTEROOO2 N $3^{\circ} 20^{\prime} 11^{\prime \prime}$ W Dist 3,507.0702

Curve CENTERO Deito Stotion Degree Degree Tongent Length Externa Long Chord Mid. Ord. P. C. Station C. C.

(13,
13, 809, 180. 3578 E 3,041,002.2538

Course from PT CENTER0002 to PC CENTEROOO3 N 1° 20'17" E Dist 1, 167.9479

Course from PT CENTEROOO3 to CENTER0004 N 20 14' 03" W Dist 73.9601
Point CENTERO004 N 13,810,628.1755 E 3,041,027.5771 Sta $63+33.23$ $===================================$
Ending chain HALN_BELKNAP description

belknap road baseline (LEFT)

Choin HALN BELKNAP LT Contoins:
CUR CENTR100 CUR CENTER 1003 S CUR CENTER1004 CENTER1005 CENTER1006 CUR CENTER1-
007 CUR CENTER1008 CUR CENTER1009 CENTER1010 Beginning chain HALN_BELKNAP_LT description

$$
\begin{gathered}
\text { Curve Dota }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Curve CENTER1C } \\
& \text { P. } \begin{array}{l}
\text { Io } \\
\text { Seltation }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Poito } \\
& \text { Delio } \\
& \text { Dogreee } \\
& \text { Tongent }
\end{aligned}
$$

Leng̣h
Radi ins
External
External
Mong Chora
Mid. Ord.
O.
O.
. $\begin{gathered}\text { Stotion } \\ \text { Stotion }\end{gathered}$

Course from PT CENTER1002 to PC CENTER1003 N $1^{\circ} 20^{\prime} 17{ }^{\prime \prime}$ E Dist 121.7697

Curve Dota					
Curve CENTER1003 P.I. Station	50+97. 19	N	13,809,393. 2819	E	3,040, 976.7192
Delto					
Tongent	8.8667				
Length	17.7308				
External	426.0093 0.0923				
Long Chord	17.7295 0.0922				
P. C. Stotion	$50+88.32$	N	13, 809, 384.4176		3,040,976. 5122
	51+06. 05	N	13, 809,402.1471		3,040,976.5573
$\begin{array}{ll} \text { Bock } & =N \\ \text { Ahead } & =N \end{array}$					
Chord Beor = N	$0^{\circ} 08^{\prime} 45^{\prime \prime} \mathrm{E}$				
course from PT CENTER1003 to PC CENTER1004 N $1^{\circ} 02^{\prime} 48{ }^{\prime \prime} \mathrm{W}$ W Dist 114.4286					
Curve Data					
Curve CENTER100 P.I. Station	52+32.37	${ }_{(R T)}^{\text {N }}$	13,809,528.4457	E	3,040, 974. 2500
Delto \quad De	2. $22^{3}, 255^{\prime \prime}$				
Degree Tangent	9 11.8911				
Length	274.0000				
External	0.1232				
Long Chord	23.7772 0.1231				
P. C. stotion	52+20.48	N	$\begin{aligned} & 13,809,516.5565 \\ & 13,809,540.3336 \end{aligned}$		$\begin{aligned} & 3,040,974.4672 \\ & 3,040,974.5254 \\ & 3,041,548.314 \end{aligned}$
T. Stotion	52+44.26				
${ }_{\text {C.C. }}^{\text {Back }}$				$\overline{\mathrm{E}}$	
A Aack			13,809,527.0409		
Chord Beor	$0^{\circ} 08^{\prime} 25^{\prime \prime}$				
Course from PT CENTER1004 to CENTER1005 N 10 19'37" E Dist 120.0000					
Point CENTER1005	N 13,809, 660. 3014		E 3,040,977.30	43 sta	53+64. 26
Course from Centerl 005 to CENTER1006 N $1^{\circ} 19^{\prime}$ '37" E Dist 130.0000					
Point CENTER1006	N 13, 809, 790.2666$006 ~+o ~ P C ~ C E N T E R 1007 ~$		E 3,040,980.31	49 Sta	$0^{54+94.26}$
Course from Centerloob to PC CENTER1007 N 1 $1^{\circ} 19^{\prime}$ 37" E Dist 120.0000					

Course from PT HALN_CLARKT_L1 to CENTER4001 N $86^{\circ} 39^{\prime} 49^{\prime \prime}$ E Dist 160.640
Point CENTER4001 N 13,807,977.2865 E 3,041,172.5612 Sto $11+50$.
Ending chain HALN_CLARKT_L description

CLARK TOWNE ROAD BASELINE RIGHT

Choin HALN-CLART-R contains:
CENTER4100 CUR HALN_CLARKT_R1 CENTER4101
Beginning chain HALN-CLARKT_R description
Point Center4100
N 13,807,934.4302
\qquad $===$

Course from CENTER4100 to PC HALN_CLARKT_R1 S $85^{\circ} 31^{\prime \prime} 58^{\prime \prime}$ E Dist 31.0583

$$
\begin{gathered}
\text { Curve Dota }
\end{gathered}
$$

rve $\begin{aligned} & \text { HALN-CLARKT_R1 } \\ & \text { Stotion }\end{aligned}$		(LT)	13,807,930.7350	E	3,040, 997.3609
Delto	$7^{\circ}{ }^{\circ} 48^{\prime \prime}{ }^{\circ} 13^{\prime \prime}$				
Degree	$23^{\circ} 51^{\circ} 07^{\prime \prime}$				
Tongent	16.3840				
Rodius	240. 2143				
External ${ }_{\text {Long Chord }}=$	3. 3.5581				
Mid. Ord. =	-0.5568				
$\begin{array}{ll}\text { P. } . \\ \text { P. T. } & \text { Stotion } \\ \text { Stotion }\end{array}$	$9+56.06$ $9+88.78$	N	$13,807,932.0111$ $13,807,931.6885$	E	3,040, 981.0267
		N	13,808, 171.4956	E	3, 040 , 999.7366
	31', 58.1				
Chord Bear $=\mathrm{S} 89^{\circ}$	26' 05 " E				

Course from Pt HaLN_CLARKT_R1 to CENTER4101 N $86^{\circ} 39^{\prime} 49^{\prime \prime}$ E Dist 161, 2287
Point CENTER4101 N 13,807,941.0720 E 3,041,174.6725 Sto $11+50.00$
$==================================$
Ending chain HALN-CLARKTMR description

OLD RICHMOND ROAD (WEST) BASELINE

Chain HALNNORICH=W Contains:
CENTERO301 CENTERO
Beginning choin \quad HALN_ORICH-W description \qquad
Point CENTER0301 N 13,809,060.3231 E 3,040,655.9085 Sto
Course from CENTER0301 to CENTERO302 N $87^{\circ} 05^{\prime} 47^{\prime \prime}$ E Dist 352.7543
Point CENTER0302
N 13,809,078.1915 E 3,041,008.2099 Stc

OAK BEND FOREST DRIVE BASELIN

Choin HALNOAKEEND contains:
CENTEROAO1 CENTER04O2
Beginning chain HALNOAKBEND description

Course from CENTER0401 to CENTERO402 N $86^{\circ} 41^{\prime} 10^{\prime \prime}$ E Dist 113.7193
Point CENTERO402
N 13,810,175.1287E 3,041,025.4910 Sto
$10+50.00$
$=============================1$
Ending Chain HALNOAKBEND description

OLD RICHMOND ROAD (EAST) BASELINE

Chain HALN-ORICHEE Contains: CENTEROSO1 CENTERO502

 \qquad
Point CENTER0501 N 13,810,366.7086E 3,041,029.9662 Stc Course from CENTER0501 to CENTERO502 N $87^{\circ} 48^{\prime} 27 "$ E Dist 158.3198 Point CENTER0502 N 13,810,372.7657 E 3,041,188.1700 Sto 12+08.32 $====================================$
Ending chain HALN_ORICH-E description

DRIVEWAY HORIZONTAL ALIGNMENTS

DRIVEWAY (LEFT) STA $14 * 43$

CRain DRIVELT1443 contains:
DRIVEOO10 DRIVEOO11

Point DRIVE0010 N 13,805,738.4102 E 3, 041, 102.7455 Sto 1 (50.00 Course from DRIVE0010 to DRIVEOO11 N 86° 39' 48.60" E D. 118.5000 - DRivE0011 $2+68.50$ $===================================$
Ending chain DRIVELT1443 descrip \dagger ion

DRIVEWAY (LEFT) STA $14 * 88$

Chain DRIVELT1488 Contains:
DRIVEOO20 DRIVEOO21
Beginning choin DRIVELT1488 description
oint DRIVE0020
Course from DRIVE0020 to DRIVE0021 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 118.5000
Point DRIVE0021 N 13,805,790.6636 E 3,041,218.4004 Sto 2+68.50
$=============================$
Ending choin DRIVELT1488 description
rps

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
w bellfort blvd to oak bend forest d

DRIVEWAY (LEFT) STA 33*78

Choin DRIVELT3378 contoins:
DRIVEOO30 DRIVEOO
Beginning chain DRIVELT3378 description
Point DRIVE0030 N 13,807,670.4543E 3,040,990.1096 Sto
$1+50.00$
Course from DRIVE0030 to DRIVE0031 N $86^{\circ} 39^{\prime} 48.60$ " E Dist 118.5000
Point DRIVE0031 N 13,807,677.3510 E 3,041,108.4087 Sto $2+68.50$

Ending chain DRIVELT3378 description

DRIVEWAY (LEFT) STA 39*65

Choin DRIVELT3965 contoins:
DRIVEO040 CUR DRIVELT3965i CUR DRIVELT39652 DRIVE0041
 \qquad
Point DRIVE0040 N 13,808,259.5736 E $3,040,955.8326$ Sto $\quad 1+50.00$ Course from drive0040 to PC DRIVELT39651 N $87^{\prime} 42^{\prime} 05.05^{\prime \prime}$ E Dist 3.2621

$$
\begin{gathered}
\text { Curve Data }
\end{gathered}
$$

Course from PT DRIVELT39651 to PC DRIVELT39652 N 89。 24' 53.14"E Dist 52.2001 Curve Data
*----

Course from PT DRIVELT39652 to DRIVE0041 N $86^{\circ} 39^{\prime} 48.60 \mathrm{NE}$ Dist 47.4533 Point DRIVE0041 N 13,808,263.4785 E 3,041,074.2382 Sta 2+68.50
$===================================$
Ending Chain DRIVELT 3965 description

DRIVEWAY (LEFT) STA 41*04

Choin DRIVELTA104 contains:

Begining chain DRIVELTA104 description \qquad
Point DRIVE0050 N 13,808,395.3298 E 3,040,947. 8502 Sto Course from DRIVE0050 to DRIVE0051 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 118.5000 Point DRIVE0051 N 13,808,402.2265 E 3,041,066.1493 Sto 2+68.50 $=================================$
Ending chain DRIVELTA104 description

DRIVEWAY (LEFT) STA 42+88

Cnoin ORIVELTA288 contains:
DRIVEOO6O DRIVEOO61
Beginning chain DRIVELTA288 description

on

\qquad

Point DRIVE0060	N	$13,808,578.6439$	E	$3,040,937.1632$	Sta	$1+50.00$
Course from DRIVE0060	to DRIVE0061 N 86°	39^{\prime}	$48.60 "$ E Dist 118.5000			
Point DRIVE0061	N	$13,808,585.5406$	E	$3,041,055.4623$	Sta	$2+68.50$

Point DRIVE0061 N 13,808,585.5406 E 3,041,055.4623 Sto
Ending chain DRIVELTA288 description

DRIVEWAY (LEFT) STA 44*33

Chain DRIVELT4433 contains: DRIVEOOTO DRIVEOOT1

Beginning chain DRIVELTA433 description \qquad
Point DRIVE0070 N 13,808,723.4560 E 3,040, 928.7208 Sta
$1+50.00$
Course from DRIVE0070 to DRIVE0071 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 118.5000
Point DRIVE0071
N $13,808,730.3527 \mathrm{E} \quad 3,041,047.0199 \mathrm{Sta}$
2+68. 50
$=================================$
Ending Chain DRIVELT4433 description

DRIVEWAY (LEFT) STA 44*91

Choin DRIVELTA491 contoins:
DRIVEOO8O DRIVEOO81
Beginning chain DRIVELTA491 description \qquad
Point DRIVE0080 N 13,808,781.8601 E 3,040, 925.3159 Sta $1+50.00$
Course from DRIVE0080 to DRIVE0081 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 118.5000
Point DRIVE0081 N 13,808,788.7568 E 3,041,043.6151 Sta 2+68.50
$==================================$
Ending chain DRIVELT4491 description

DRIVEWAY (LEFT) STA 49+48

Choin DRIVELT4948 contoins:
DRIVEOO90 CUR DRIVELT49481 DRIVE0091
Beginning chain DRIVELT4948 description \qquad
Point DRIVE0090 N 13,809,240.8222 E 3,040,903.8997 Sta $1+50.00$ Course from DRIVE0090 to PC DRIVELT49481 N 870 05' 47.36" E Dist 62.4670 Curve Dota
$*-------*$

DRIVEWAY (LEFT) STA 52*40

Choin DRIVELT5240 contoins:
DRIVEO100 DRIVE0101 DRIVE0102

Point DRIVE0100 N 13,809,537.3293E 3,040,910.5667 Stc
Course from DRIvE0100 to DRIVE0101 S $88^{\circ} 35^{\prime} 07.53^{\prime \prime}$ E Dist 52.3027
Point DRIVE0101 N 13,809,536.0381 E 3,040,962.8535 Sto
Course from DRIVE0101 to DRIVEO102 S 890 07' 10.73" E Dist 47.6973
Point DRIVE0102 N 13,809,535.3053 E 3,041,010.5451 Sto
2+02. 30
$===================================$
Ending chain DRIVELT5240 description

DRIVEWAY (RIGHT) STA $16+13$

Chain DRIVERT1613 contains:
DRIVE1000 CUR DRIVERTi6131 DRIVE1001
Beginning chain DRIVERT1613 description \qquad
Point DRIVE1000 N 13,805,910.8837 E 3,041,142.7754 Sta 2+00.00
Course from DRIVE1000 to PC DRIVERT16131 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 78.8638

Course from PT DRIVERT16131 to DRIVE1001 N $88^{\circ} 02^{\prime} 20.48^{\prime \prime}$ E Dist 63.9340
Point DRIVE1001 N 13, 805,917.9942 E 3,041,292.5964 Sto $3+50.00$
$============================$
Ending chain DRIVERT1613 description

DRIVEWAY (RIGHT) STA $18+36$

Choin DRIVERT1836 contoins: DRIVEO210 DRIVEO211

Beginning choin DRIVERT1836 descrip+ion \qquad
Point DRIVEO210 N 13,806,134.0148 E 3,041,129.7671 Sto $2+00.00$ Course from DRIVE0210 to DRIVE0211 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 150.0000
Point DRIVEO211
N $13,806,142.7448 \mathrm{E}$
3,041,279.5128 Sto $3+50.00$
$==================================$
Ending Chain DRIVERT1 1836 description

DRIVEWAY (RIGHT) STA 20+11

Choin DRIVERT2011 contoins:
DRIVEO220 DRIVEO221

Beginning chain DRIVERT2011 description
Point DRIvE0220 N 13,806,308.5724 E 3,041,119.5906 Sta 2+00.00 Course from DRIVE0220 to DRIVE0221 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 150.0000
Point DRIVE0221 N 13, 806,317.3024 E 3,041,269.3363 Sta $3+50.00$
$================================$
Ending Chain DRIVERTVO11 description

DRIVEWAY (RIGHT) STA 20*66

Chain DRIVERT2066 contains:
DRIVEO230 DRIVEO231

Point DRTVE0230 N 13, 806, 363.5620 E
$2+00.00$
Course from DRIVE0230 to DRIVE0231 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 131.2091
Point DRIVE0231 N 13,806,371.1983 E 3,041,247.3715 Sta
3+31. 21
$==================================$
Ending chain DRIVERTZO66 description

DRIVEWAY (RIGHT) STA 22*52

Cha in DRIVERT2252 conta ins:
DRIVEO240 DRIVEO241
Beginning chain DRIVERT2252 description

Point DRIVE0240	N	$13,806,549.2534$	E	$3,041,105.5592$	Sta	$2+00.00$
Course from DRIVE0240	to DRIVE0241 N 86°	39^{\prime}	$48.60 "$ E Dist 150.0000			
Point DRIVE0241	N	$13,806,557.9834$	E	$3,041,255.3049$	Sta	$3+50.00$

$===================================$
Ending chain DRIVERT2252 description

DRIVEWAY (RIGHT) STA 23*89

Choin RRIVERT2389 contoin
DRIVEO250 DRIVE0251
Beginning chain DRIVERT2389 description \qquad
Point DRIVE0250
N $13,806,685.9108 \mathrm{E} \quad 3,041,097.5922$ Sto
$2+00.00$
Course from DRIVE0250 to DRIVE0251 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 123.8219
Point DRIVE0251 N 13, 806, 693.1173 E 3,041, 221. 2042 Sta $3+23.82$

DRIVEWAY (RIGHT) STA 27*43

Choin DRIVERT2743 contains: DRIVEO260 DRIVEO261

Beginning chain DRIVERT2743 descrip+ion \qquad
Point DRIVE0260 N 13, 807,039.1310 E 3,041,076.9999 Sta
$2+00.00$
Course from DRIVE0260 to DRIVEO261 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 138.4400
Point DRIVE0261
N 13, 807,047.1882 E 3,041,215.2053 Sta
$3+38.44$
$==================================$
Ending Chain DRIVERT2743 description

DRIVEWAY (RIGHT) STA 29*26

Choin DRIVERT2926 contains:
DRIVEO270 DRIVE0271
Beginning chain DRIVERT2926 descrip+ion \qquad
Point DRIVE0270 N 13,807,221.8084 E 3,041,066.3500 Sto
Course from DRIVE0270 to DRIVE0271 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 146.4000
Point DRIVE0271 N 13,807,230.3288 E 3,041,212.5019 Sto $3+46.40$
$=================================$
Ending chain DRIVERT2926 description

DRIVEWAY (RIGHT) STA $33+47$

Beginning chain DRIVERT3347 description
Point DRIVE0280
N $13,807,642.8513$ E $3,041,041,8037$ Sto
$2+00.00$
Course from DRIVE0280 to DRIVE0281 N $86^{\circ} 39^{\prime} 48.60$ " E Dist 149.3731
Point DRIVE0281 N 13,807,651.5449E 3,041,190.9236 Sto \qquad

DRIVEWAY (RIGHT) STA $34+23$

Chain DRIVERT3423 contains: DRIVEO290 DRIVEO291

 \qquad
Point DRIVE0290
N 13, 807,718.7755 E $3,041,037.3774$ Sto
2+00. 00
Course from DRIVE0290 to DRIVE0291 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 142.6302
Point DRIVE0291
N $13,807,727.0766 \mathrm{E} \quad 3,041,179.7658 \mathrm{Sto}$
$3+42.63$

DRIVEWAY (RIGHT) STA 36+07

Choin DRIVERT3607 contains:
DRIVEO300 DRIVE0301
Beginning chain DRIVERT3607 description \qquad

Point DRIVE0300 N 13,807,902.4732 E 3,041,026.6680 Sto

Course from DRIVE0300 to DRIVE0301 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 131.1717
Point drive0301 N 13,807,910.1073E 3,041,157.6174 Sto $3+31.17$
$=================================$
Ending Chain DRIVERT3607 description

DRIVEWAY (RIGHT) STA 37+33

Choin DRIVERT3733 contoins:
DRIVE0310 DRIVE0311
$\underset{==g \text { inning chain RRIVERT3733 description }}{\text { Ben }}$ \qquad
Point DRIVE0310 N 13,808,028.0130 E 3,041,019.3492 Sto
Course from DRIVE0310 to DRIVE0311 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 112.9861
Point DRIVE0311 N 13,808,034.5888 E 3,041,132.1438 Sto $3+12.99$

DRIVEWAY (RIGHT) STA $\mathbf{3 8 * 8 3}$

Chain DRIVERT3883 contains:
DRIVEO320 DRIVE0321

Point DRIVE0320 N 13,808,177.7250 E 3,041,010.6212 Sto $2+00.00$ Course from DRIVE0320 to DRIVE0321 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 128.1256

20 to DRIVE0321 N 86° 39' 48.60" E Dist 128.12
$\mathrm{~N} \quad 13,808,185.1819 \mathrm{E} \quad 3,041,138.5296$ Sto
Point DRIVE0321
$3+28.13$

DRIVEWAY (RIGHT) STA 40*93

Chain DRIVERT4093 Contains:
DRIVE2000 DRIVE2001 DRIVE2002
Beginning choin DRIVERT4093 descrip+ion
Point DRIVE2000 N 13, 808, 366. وe8
W M, 808,386.9988 E 3,040,998.4208 Sto
Course from DRIVE2000 to DRIVE2001 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 84.0860
Point DRIVE2001 N 13,808,391.8926 E 3,041,082.3642 Sto
$2+84.09$
Course from DRIVE2001 to DRIVE2002 N $87^{\circ} 26^{\prime} 31.13^{\prime \prime}$ E Dist 57.3008
Point DRIVE2002 N 13,808,394.4500 E 3,041,139.6080 Sto $3+41.39$
$=================================$
Ending choin DRIVRTA093 description

DRIVEWAY (RIGHT) STA 42*16

Chain DRIVERT 4216 contains:
DRIVEO340 DRIVE0341

Point DRIVE0340 N 13,808,510.0842 E $3,040,991.2450$ Sto $2+00.00$
Course from DRIVE0340 to DRIVE0341 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 143.2619
Point DRIVE0341 N 13,808,518.4220 E 3,041,134.2641 Sto
3+43. 26

DRIVEWAY (RIGHT) STA 46*05

Cnain DRIVERT 4605 contains: DRIVEO 350 DRIVE0351

Beginning choin DRIVERT4605 description \qquad
Point DRIVE0350 N 13,808,897.9093 E 3,040,968.6353 Sto $2+00.00$ Course from DRIVE0350 to DRIVE0351 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 129.9063 Point DRIVE0351 N $13,808,905.4699$ E $\quad 3,041,098.3214$ Sto 3+29.91
$===================================$
Ending Choin DRIVERTA60 description

DRIVEWAY (RIGHT) STA 47*93

Chain DRIVERT4793 contains:
DRIVEO360 DRIVE0361
Beginning choin DRIVERT4793 description
Point DRIVE0360 N 13, 809, 086.4565 E 3,040,957.6432 Sto
$2+00.00$
Course from DRIVE0360 to DRIVE0361 N $86^{\circ} 39^{\prime} 48.60^{\prime \prime}$ E Dist 155.3902
Point DRIVE0361 N 13,809,095.5002 E 3,041,112.7700 Sto $3+55.39$
Ending Choin DRIVERTMT93 description

DRIVEWAY (RIGHT) STA 51 * 30

Chain DRIVERT5130 contains:
DRIVEO 370 DRIVE0371
Beginning choin DRIVERT5130 descr iption
$===12$ \qquad
Point DRIVE0370 N 13,809,429.3272 E 3,040,958.1009 Sto
$2+00.00$
Course from DRIVE0370 to DRIVE0371 S $86^{\circ} 13^{\prime} 47.89^{\prime \prime}$ E Dist 161.5160
Point DRIVE0371
N 13,809,418.7072 E 3,041,119.2674 Sto
$3+61.52$
$\begin{aligned} & ================================= \\ & \text { Ending Choin DRIVERTS130 description }\end{aligned}$

DRIVEWAY (RIGHT) STA 57*32

Chain DRIVERT5732 contains:
DRIVE0380 CUR DRIVERT57321 DRIVE0381

Point DRIVE0380
N 13,810,028.8448 E 3,040,972.0602 Stc $2+00.00$ Course from DRIVE0380 to PC DRIVERT5732 S $88^{\circ} 40^{\prime} 16.48^{\prime \prime}$ E Dist 110.0719

Course from PT DRIVERT57321 to DRIVE0381 S 770 45' 42.18"E Dist 32.8989 Point DRIVEO381 N 13,810,018.8694 E 3,041,118.0296 Sto $3+46.78$

PEDESTRIAN TRAIL HORIZONTAL ALIGNMENTS

pedestrian trail ol

Beginning chain WTRAIL description
Feoture: Geom_secondary
Feoture: Geom-Secondar
int wtraill
Course from WTRAIL1 to PC WTRAIL_3 N $87^{\circ} 17^{\prime} 36.26^{\prime \prime}$ W Dist 13.4958

$$
\begin{aligned}
& \text { Curve Doto } \\
& \text { *- }
\end{aligned}
$$

Course from PT WTRAIL_3 to PC WTRAIL_6 S $1^{\circ} 19^{\prime} 43.52^{\prime \prime}$ W Dist 112.7924
Curve Doto
*----

Course from PT WTRAIL_6 to WTRAIL9 S $87^{\circ} 45^{\prime} 18.61^{\prime \prime}$ W Dist 9.1888
Point WTRaIL9 N 13,809,796.4344 E 3,040,943.1544 Sta Course from wTRAIL 9 to WTRAIL10 S $87^{\circ} 44^{\prime}$ 09.61" W Dist 134.9572
Point WTRAILIO N 13,809, 791.1031 E 3,040,808.3025 Sta
$22+09.12$
$23+44.07$
Ending chain WTRAIL description

PEDESTRIAN TRAIL 02

Beginning chain ETRAIL description
Feoture: Geom Secold

> lescription

Point ETRALL $N \quad 13,809,951.2338 \mathrm{E} \quad 3,041,058.5075$ Sta Course from ETRAIL1 to PC ETRAIL_3 S $83^{\circ} 13^{\prime} 25.08^{\prime \prime}$ E Dist 10.9938

FORT BEND COUNTY, TEXAS				
BELKNAP ROAD IMPROVEMENTS W BELLFORT BLVD TO OAK BEND FOREST DR COORDINATE GEOMETRY				
$\overline{\text { anty prou - prs pros - }}$				
$\frac{17-2-11}{\text { DESCNED }}$	008169	${ }_{\text {checke }}^{2023}$		24
隹		${ }_{\text {Prem }}$	VERFED	

encing choin HALN_PEDTRLO3 description
KEEGAN BAYOU BASELINE
 Beginning chain HALN_KEEGAN descrip+ion

Point KEEGANOO1 N 13,809,733.7671 E 3,041,355.1404 Sto
7+09. 07
Course from kegganool to keEganoor S $89^{\circ} 26^{\prime} 54.21^{\prime \prime} \mathrm{W}$ Dist 93.3935
Point KeEganoor N 13,809,732.8680 E 3,041,261.7513 Sta
Course from KEEGANOO2 to KEEGANOO3 S $83^{\circ} 09^{\prime} 49.10^{\prime \prime} \mathrm{W}$ Dist 99.3290
Point KEEGANOO3 N 13,809,721.0444 E 3,041,163.1285 Sta
Course from KEEGANOO3 to KEEGANOO4 N $88^{\circ} 14^{\prime} 18.43^{\prime \prime}$ W Dist 148.2082
Point KEEGANO04 N 13,809,725.6004E 3,041,014.9903 Sta Course from KEEGANOO4 to KEEGANOO5 $\mathrm{N} 88^{\circ} 14^{\prime} 18.44^{\prime \prime} \mathrm{W}$ Dist 6.6064 Point keEGANOO5 N 13,809,725.8034 E 3,041,008.3870 Sta $10+50.00$ Course from KEEGANOO5 to KEEGANOO6 S 790 02' 00.66" W Dist 126.6568 Point keeganoo6 N 13,809,701.7089 E 3,040,884.0432 Sta Course from KEEGANOO6 to KEEGANOOT S $86^{\circ} 20^{\prime} 58.55 "$ W Dist 92.7582 Point KEEGANOOT N N 13,809,695.8031 E $3,040,791.4732$ Sta
Course from KEEGANOOT to KEEGANOO8 N 820 40' 03.63" W Dist 82.8320 Point KEEGANOO8 N 13,809,706.3745 E 3,040,709.3185 Sta $13+58.85$

Ending choin HALN_KEEGAN description
rPS

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
w bellfort blvd to oak bend forest di
COORDINATE
GEOMETRY

removals SHEET	T00100001 tXDOT SPEC USED SPEC NO. 100 preparing RIGHT-OF-WAY STA	harris county spec SPEC NO. 104 REMOVE OLD Concrete (pavement) sy	harris county spec SPEC NO. 104 remove old CONCRETE (CURB) LF	harris county spec spec no. 104 pAVING) sy	H00104005 HARRIS COUNTY SPEC USED SPEC NO. 104 REMOVING OLD CONCRETE (SIDEWALK) SY	H00465002 HARRIS COUNT SPEC SSEC NO. 465 SEMOVE EXISTING 18" RCP LF	H00465003 HARRIS COUNTY SPEC USED SPEC NO. 465 REMOVE EXISTING 24" RCP LF	HARRIS COUNTY SPEC USED SPEC NO. 465 REMOVE EXISTING $30^{\prime \prime}$ LF	H00465004 HARRIS COUNTY SPEC USEDC NO. 465 REMOVE EXISTING 36" RCP LF	H00465006 HARRIS COUNTY SPEC USED SPEC NO. 465 REMOVE EXISTING 48" RCP LF
FORT BEND COUNTY										
$1 \mathrm{OF}^{5}$	8	619	360		19	124	70			48
2 OF 5	10	93	77			75	85			
3 OF 5	10	995					220	77		
4 OF 5	10	876					108	106	83	
5 OF 5	,	70		624			13			
SUBTOTAL	44	2,653	437	624	19	199	496	183	83	48
HARRIS COUNTY										
5 OF 5	3	937	274				315			
SUBTOTAL	3	937	274	0	0	0	315	0	0	0
totals	47	3,590	711	624	19	199	811	183	83	48

removals SHEET	н00495001 HARRIS COUNTY SPEC USED SPEC NO. 495 REMOVING OLD STRUCTURES - FLEX beam guard rail LF	H00495003 harris county spec used SPEC NO. 495 removeOLD STRUCTURES (PIPSS) LF	но0495003 harris county spec used SPEC No. 495 remone old structures INLETS (ALL DEPTHS) EA	H00495005 harris county spec used SPEC No. 495 REMOVE OLD STRUCTURES SAFETY END TREATMENTS EA	H00500001 harris county spec used SPEC No. 500 remove \& relocate mail Box EA	H00500002 HARRIS COUNTY SPEC USED SPEC NO. 500 REMOVE \& RELOCATE SIGNS EA	H00500003 harris county spec used SPEC NO. 500 remove existing roadway EA	н00540001 harris county spec used SPEC No. 540 REMOVE AND DISPOSE OF EXISTINC A ASHALTIC SURFACE ANO BASE MATERIAL (ALL DEPTHS) sr
FORT BEND COUNTY								
1 OF 5			1		2		3	2,691
2 OF 5					1	2		3,518
3 OF 5		130		2	5		2	3,307
4 OF 5		151		6	4	2	1	3,670
5 OF	203	61	1			2	4	1,611
SUBTOTAL	203	342	2	8	12	6	10	14,797
harris county								
5 OF 5			5			4	1	1,119
SUBTOTAL	0	0	5	0	0	4	1	1,119
totals	203	342	7	8	12	10	11	15,916

removals SHEET	H00550003 HARRIS COUNTY SPEC USED SPEC NO. 550 remove and salvage fence (all types) LF	н00674008 tXDOT SPEC USED SPEC NO. 674 remove pavenent MARKINGS (ANY BUTTON) EA	H00674009 HARRIS COUNTY SPEC USED SPEC No. 674 REMOVAL Of ALI PAVEMENT MARKINGS SF
FORT BEND COUNTY			
OF	41		
OF	159		
OF	464		
OF 5	126		
5 OF			
Subtotal	790	0	0
harris county			
5 OF 5		336	6,446
Subtotal	0	336	6,446
totals	790	336	6,446

date		grv		
FORT BEND COUNTY, TEXAS				
BELKNAP ROAD IMPROVEMENTS w BELLFORT BLVD TO OAK BEND FOREST DR SUMMARY OF QUANTITIES REMOVALS				
	RPS PROJ.	OATE	${ }_{\text {SCME }}$	${ }_{\text {StEET }}^{\text {S }}$ Of
	008169	2023		
	dranvo by	CHECCED OM	verfeb by	27

roadway sheet	H00220002 HARRIS COUNT SPEC NO. 220 LIME TREATMENT ($8^{" ~ D E P T H) ~}$ (SY)	H00221001 HARRIS COUNTY SPEC NO. 221 HYDRATED LIME (SLURRY) OR LIME SLURRY (TON)	H00360001 HARRIS COUNTY SPEC NO. 360 CONCRETE PAVEMENT	H0036000 HARRIS COUNTY SPEC NO. 360 CONCRETE PAVEMENT $\left(10^{\prime \prime}\right)$	T003606043 TxDOT SPEC USED SPEC NO. 360 CONC PVMT REINF) (FAST TRK) (13") (SY)	H00433003 HARRIS COUNT SPEC NO. 433 CEMENT STABILIZED ($6^{\prime \prime}$ THICK) (SY)	H0051001 HARRIS COUNTY SPEC No. 516 FLEX BEAM GUARDRAIL INCLUDING mowing strip (LF)	H00516002 HARRIS COUNTY SPEC NO. 516 SINGLE GUARDRAIL 12 GUAGE ET-2000 PLUS OR SKT 350 I WI TH MOWING STRIP (EA) (EA)	H00516003 HARRIS COUNT SPEC NO. 516 METAL BEAM TRANS (TL2) TRANS (TL2)	H00516004 HARRIS COUNTY SPEC No. 516 FLEXIBLE BEAMCUARDRAL TURNDOWN SECTION (12 Guage) (EA)	H00530001 HARRIS COUNT SPEC USED SPEC NO. 530 REINFORCED CONCRET (4-1/2") (SY)	H00530006 HARRIS COUNT SPEC NO. 530 CONCRETE CUR AND GUTTER (MONOL ITHIC) MONOLITHIC (LF)	H00530007 HARRIS COUNT SPEC NO. 530 REINFORCED - MOUNT CUR MOUNTABLE (LF)	H005300016 HARRIS COUNT SPEC NO. 530 ADA RAMP TYPE 7	H00530009 HARRIS COUNTY SPEC NO. 530 RE INFORCED CONCRETE DRIVEWAY (8") (SY)	H00536001 HARRIS COUNTY SPEC NO. 536 COLORING ONCRETE FOR MEDIAN NOSES (6 " THICK) (SY)
FORT BEND																
10 O 26	1,838	36.4	1,699.9			230.0					307.0	586		2	230.0	
2 $30 \% 26$ $30 \% 26$	$\frac{1,781}{1,773}$	35.3 35.1	$\frac{1,636.9}{1,642.3}$			220.0 384.0					424.9 416.3					
4 OF 26	2,374	47.0	2,197.9			109.0					386.0			2	109.0	
$\begin{array}{r}5 \text { OF } 26 \\ 6 \\ 60 \text { OF } 26 \\ \hline\end{array}$	1,830 1,975 1,975	36.2 39.1	$1,670.4$ $1,856.1$			166.0 705.0					433.1 377.0				166.0 705.0	
7 OF 26 0 Of	2,076	41.1 318	1,940.1			359.0					402.0 357	${ }^{747}$			359.0	
8 OF 26 9 90 OF 26	1,709 1,756	33.8 34.8	$1,610.1$ $1,506.6$		167.8	721.0 487.0					357.7 383.9	507 617		6	721.0 487.0	
+10 OF 26	140	2.8	$\frac{126.0}{126.4}$								28.2 18.1	50				
11 OF 26 $120 \% 26$ 15	862 708	17.1 14.0	826.4 523.1			172.0 130.0	50			2	127.1 119.0	495 405			172.0 130.0	2.0
13 OF 26	697	13.8		608			100	2			113.2		40			
15 OF 26	649		535.5			180.0					149	497			80.0	
16 OF 26 17 17	734	$\frac{14.5}{15.2}$		$\frac{98}{685}$		66.0	100	2	$\frac{2}{2}$	2	154.6 101.3	444 345	40		66.0	
$\frac{20 \text { OF } 26}{26}$																
	279	5.5	251.6		287.5						105.8	148				
- 24 OF 26											192.4					
-											$\begin{array}{r}\text { \% } \\ \times \quad 209.9 \\ \hline 231.1 \\ \hline\end{array}$					
Subtotal							350	4	8	4	5,020,4					
HAPRIS	21,950	434.5		1,492.0							5,020,4				3,929.0	2.0
${ }^{\text {che }}$ OF/26	426	8.4		377.2	345.5						32.6			2		2.0
14 OF 26	342 807	6.8 16		299.7 756.3		7.0						96				
18 OF 26	390	$\xrightarrow{16.7}$		369.7							476.4			2	7.0	
${ }^{19} 19$ OF 26				0.0								257				12.0
Subtotal	1,965		0.0		345.5	7.0	0	0	0	0						
totals	23, 915	473.4	18,558.9	3,264.9	814.7	3,936.0	350	4	8	4	5,216.4	9,813	80	16	3,936.0	16.0

. SEE Project notes for adoitional
2. THE QUANTITIES SHOWN HEREON
ARE FOR WIDE BUILD OPTION.
3. THE VALUES DENOTED BY (*) ARE
DIFFERENT FOR NARROW BUILO OPTION.

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS w Bellfort blvd to oak bend forest d SUMMARY OF QUANTITIES ROADWAY

STORM SEwER SHEET	HARRIS COUNTY SPEC USED SPEC NO, 421\&DWC CONCRETE COLLAR PER DETAILS (EA)	HARRIS COUNTY SPEC USED SPEC NO. 429 TRENCH SAFETY SYSTEM (5'TO 10') (LF)	HARRIS COUNTY SPEC USED SPEC NO. 429 TRENCH SAFETY SYSTEM $\left(10^{\prime}\right.$ TO $\left.{ }^{\prime} 5^{\prime}\right)$ (LF)	HARRIS COUNTY SPEC NO. 460 REINFORCED CONCRETE PIPE, RUBBER CASKET $(24 ")$ (LF) (LF)	HARRIS COUNTY SPEC USED SPEC NO. 460 REINFORCED ONCRETE PIPE, C76, CLASS I I I', RUBBER GASKE (30") (LF)	HARRIS COUNTY spec USED SPEC NO. 460 RE INFORCED ONCRETE PIPE, C76, CLASS III', RUBBER GASKET (36") (LF)	HARRIS COUNTY SPEC NO. 460 RE INFORCED ONCRETE PIPE C76, CLASS III, (42") (LF)	HARRIS COUNTY SPEC USED SPEC NO. 460 REINFORCED CONCRETE PIPE, C76, CLASS III', RUBBER GASKET' (48") (LF)	HARRIS COUNTY SPEC NO 460 REINFORCED C76, CLASS III, (54' (LF)	HARRIS COUNTY SPEC USED SPEC NO. 460\&DWG PROPOSED RCP STUB-IN PER DETAILS IN PLANS) (EA)	HARRIS COUNTY SPEC USED SPEC NO. 463 SET (TYPE II) (4:1) (C) (EA)
FORT BEND county											
10 O 26	6	89	59	65		59		24		1	
20 O 26		215	298	122	93	298					
3 OF 26		518		447	71						
4 OF 26		257		257							
5 OF 26		491		307			217				
60 O 26	1	553		196			395				
7 OF 26		367	229	209			35	333	19		
80 OF 26 90%		148 235	391	148 215					301	1	1
10 OF 26		25		25							
110 F 26		286		286							
120 F 26		165		165							
13 OF 26											
150 F 26		107		141							
16 OF 26		144		178							
17 OF 26		118		118							
20 OF 26											
210 F 26											
22 OF 26											
230526											
240 F 26		139		139							
250 ¢ 26		131		131							
26 OF 26											
Subtotal	7	3,988	977	3,149	164	357	647	357	610	2	1
$130 F 26$		116		116							
$140 \% 26$		99		99							
17 OF 26		119		119							
18 OF 26		70		70							
190 F 26											
23 OF 26											
Subtotal	0	404	0	404	0	0	0	0	0	0	0
totals	7	4,392	977	3,553	164	357	647	357	610	2	1

 CivilTecl

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
SUMMARY OF QUANTITIES
STORM SEWER

$\begin{aligned} & \text { STORM SEWER } \\ & \text { SHEET } \end{aligned}$	HARRIS COUNTY SPEC USED SPEC NO. 471 PRECAST CONCRETE STANDARD MANHOLE 15 FT<DEPTHく 10 FT) (EA)	HARRIS COUNTY SPEC USED SPEC NO. 471 PRECAST CONCRETE EXTRA DEP (DEPTH>10 FT) (EA)	HARRIS COUNTY SPEC USED SPEC NO. 472 TYPE A (EA)	HARRIS COUNTY SPEC USED SPEC NO. 472 TYPE C (EA)	HARRIS COUNTY SPEC USED SPEC NO. 472 TYPE C-1 (EA)	HARRIS COUNTY SPEC USED SPEC NO. 473 ADJUSTING MAN INLETS (EA)	HARRIS COUNTY SPEC USED SPEC NO. 473 CAPPING MANHOLES (EA)	HARRIS COUNTY SPEC USED SPEC NO. 473 CAPPING (EA)	HARRIS COUNTY SPEC USED SPEC NO. 491 RE INFORCED SLOPE PAVING (SY)	HARRIS COUNTY SPEC USED SPEC NO. DWG OFFSITE DRAINAGE (ALLPIPES AND ALIZES) (LF)
(${ }_{\text {FORTJ BEND }}^{\text {COUNTY }}$										
10 O 26	1	2	1		2	2		1		
20 O 26				4						83
3 OF 26			3	4						87
40 O 26			1	4						
5 OF 26			3	6					60	
6 OF 26	1		2		2					
7 OF 26	1		5	2	2				60	
80F 26			3	4			1			
9 OF 26 $100 \% 26$	1			4	㖪	1	1			
110 OF 26			1	2						
120526				2						
13 OF 26										
$150 F 26$			1	1	1					
16 OF 26			1	2			1			
17 OF 26			1	1						
20 OF 26										
210 ¢ 26										
22 OF 26 23 OF 26										
24 OF 26			2					1		
25 OF 26			2					1		
26 OF 26										
Subtotal	4	2	29	36	7	3	3	3	120	170
${ }^{\text {Harris }}$										
countr										
13 OF 26				1						
14 OF 26					1					
17 OF 26			1	1					190	
18 OF 26	1				1	1			20	
19 OF 26										
23 OF 26										
SUBTOTAL	1	0	2	2	2	1	0	0	210	0
totals	5	2	31	38	9	4	3	3	330	170

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
SUMMARY OF QUANTITIES
STORM SEWER

SIGNING AND PAVEMENT MARKINGS SHEET	H00624001 HARRIS COUNTY SPEC USED SPEC NO. 624 ALUMINUM SIGNS (GROUND MOUNTED) FURNISH \& INSTALL (EA)	H00660001 HARRIS COUNTY SPEC USED SPEC NO. 660 PAINTED CURB (YELLOW) (LF)	H00660002 harsis count SPEC USED SPEC NO. 660 REFLECTORIZED PAVEMENT MARKINGS TYPE . ${ }^{1}$ (THERMOPLASTIC) 4 WHITE/DASHED (LF)	H00660005 HARRIS COUNTY SPEC USED SPEC NO. 660 REFLECTORIZED PAVEMENT MARK INGS TYPE I (THERMOPLASTIC FURNISH \& APPLIED (LF)	н00660006 harris county SPEC USED SPEC NO. 660 REFLECTORIZED pavement mark ings (THERMOPLASTIC) FURNISELEOWAPSLID (LF)	H00660009 HARRIS COUNTY SPEC USED SPEC NO. 660 REFLECTORIZED PAVEMENT MARK INGS TYPE II (THERMOPLASTIC FURNISH \& APPL (LF)	н00660010 harris count SPEC USED SPEC NO. 660 REFLECTORIZED PAVEMENT MARKINGS TYPE I (THERMOPLASTIC FURNISH \& APPLIED (LF)	н00660013 harris county SPEC USED SPEC NO. 660 REFLECTORIZED PAVEMENT MARKINGS TYPE I (THERMOPLASTIC 24. WHITESOLLID FURNISH \& APPLIED (LF)
FORT EEND COUNTY								
10 OF	4			193	1,585		285	343
20 OF 6 3 OF 6	6		22 22	232 232	1,849 1,849		210 63	
4 OF 6	5	61	68	116	1,377	17	284	
5 OF 6	3		480				24	
6 OF 6					150		75	341
Subtotal	23	61	592	773	6,810	17	941	1.050
HARRIS COUNTY								
5 OF 6	4	185	202		36		91	107
Subtotal	4	185	202		36		91	107
totals	27	246	794	773	6,846	17	1,032	1,157

EROSION CONTROL SHEET	H00162001 HARRIS COUNTY SPEC USED SPEC NO. 162 SODDING FOR EROSION CONTROL (VARIOUS wIDTHS) (SY)	н00164003 haRRIS COUNTY SPEC USED SPEC NO. 164 SEEDING AND EROSION CONTROL blanket (SY)	ноО166001 HARRIS COUNTY SPEC USED SPEC NO. 166 FERTILIZER (LB)	н0071 3001 HARIS COUNTY SPEC USED SPEC NO. 713 RE INFORCED FABRIC BARRIER ${ }^{160 \%}$ OOF UNIT COST FOR installation AND 40\% OF UNIT COST FOR REMOVAL) (LF)	ноо724001 harris count SPEC USED SPEC NO. 724 STABILIZED ACCESS ITYPE 1-ROCK 60% OF UNIT FURNISH AND INSTALLATION AND 40\% OF UNIT COST FOR (SY)	н00719001 HARRIS COUNTY SPEC USED SPEC NO. 719 INLET BAEPIION (STAGE 1, WITH FIBER ROLLS) ISTRNI Sh remove (EA)	н00750002 HARRIS COUNTY SPEC USED SPEC NO. 750 ROCK FILTER DAM 60\% COST FOR FURNISH AND NNSALLATION COST FOR removal) (EA)	H00751001 harris county SPEC USED SPEC NO. 751 SWPPP INSPECTION AND maintenance	5066040 TXDOT SPEC USED SPEC NO. 506 BIODEG EROSN CONT LOGS IINSTL INSPECTION AND maintenance (LF)
FORT BEND									
PHASE 182					111			9	
10F 8	312.7 368.2	$1,351.3$ $2,157.3$	167.5 267.4	703		6	2		30
3 OF 8	186.2	1,925.5	238.7				4		
4 OF 8	431.4	1,698.4	210.5	204		10	1		
5 OF 8	318.0	840.0	104.1			3			
6 OF 8						4 5			
7 OF 8 8				462		5 2			
8 OF 8				462		2			
PHASE 3 \& 4					111			9	
$1{ }^{\text {OF }} 8$	329.2	1,333.4	165.3			8	1		
2 OF 8	405.3	2,149.4	266.5			9	2		
3 OF 8	415.8	1,489.5	184.6			8	2		
4 OF 8	446.9	3,183.9	394.7	207		10	2		
5 OF 8	281.0	1,234.1	153.0			5			
6 OF 8									
7 OF 8	206.9								
8 OF 8				408		1			
SUBTOTAL	3,701.6	17,362.8	2,152.4	1,984	222	85	17	18	30
HARRIS COUNTY									
PHASE 1 \& 2									
5 OF 8	81.7	413.3	51.2			4			
7 OF 8									
PHASE 3 \& 4									
5 OF 8	159.8	572.8	71.0			4	4		
7 OF 8									
SUBTOTAL	241.5	986.1	122.2			8	4		
totals	3,943.1	18,348.9	2,274.7	1,984	222	93	21	18	30

NOTES:

1. A FERTILIZER APPLICATION RATE OF 600 lds/acre For the hydromulched grassing and seeding area was assumed for this project. this is for contractors information
2. the contractor is, to install the stabilized construction access in locations approved by fort bend county. the above quantities assume that the access will

		ask		
FORT BEND COUNTY, TEXAS				
BELKNAP ROAD IMPROVEMENTS w BELLFORT BLVD TO OAK BEND FOREST DR SUMMARY OF QUANTITIES EROSION CONTROL				
CNTY Prou a Res prou				
17-2-11	008169	2023		32
	${ }_{\text {ORRWV Br }}^{\text {RPS }}$	${ }_{\text {CHECKEO }}^{\text {Pr }}$	${ }_{\text {verfe }}^{\text {vPS }}$	

End Area Volume Report

Report Created: 10/23/2023
Time: 9:43am
Cross Section Set Name: PSE 20231022
Alignment Name: HALN BELKNAP
Input Grid Factor: 1 Note: All units in this report are in feet, square feet and cubic

Station

Station
Factor Area Volume Adjusted Factor Area Volume Adjusted

13+37.87 R1	1151.99	0	0				
$14+00.00$ R1	173.63	259.59	259.59	1	5.45	6.27	6.27
$15+00.00$ R1	143.44	216.79	216.79	1	15.69	39.16	39.1
16+00.00 R1	129.83	135.69	135.69	1	86.7	189.62	189.6
17+00.00 R1	166.29	178.01	178.01	1	37.19	229.42	229
18+00.00 R1	181.03	272.83	272.83	1	46.43	154.85	154.8
19+00.00 R1	193.66	323.5	323.5	1	14.23	112.34	112
20+00.00 R1	1129.72	413.66	413.66	1	8.77	42.59	42.5
21+00.00 R1	1112.98	449.44	449.44	1	13.5	41.24	41.24
22+00.00 R1	187.66	371.55	371.55	1	4.35	33.07	33.07
23+00.00 R1	192.4	333.43	333.43	1	9.47	25.59	25.59
24+00.00 R1	184.98	328.48	328.48	1	18.59	51.95	51.95
25+00.00 R1	159.6	267.73	267.73	1	10.86	54.54	54.54
26+00.00 R1	153.2	208.89	208.89	1	15.3	48.45	48.45
27+00.00 R1	171.69	231.28	231.28	1	28.59	81.28	81.28
28+00.00 R1	1112.84	341.73	341.73	1	6.07	64.2	
29+00.00 R1	1160.33	505.87	505.87	1	1.61	14.23	14.23
30+00.00 R1	1214.67	694.43	694.43	1	0	2.99	
$31+00.00$ R1	1198.3	764.75	764.75	1	0.02	0.03	. 03
$32+00.00$ R1	1157.43	658.75	658.75	1	1.18	2.22	
$33+00.00$ R1	1122.67	518.69	518.69	1	5.78	2.9	
$34+00.00$ R1	1163.65	530.21	530.21	1	27.59	61.8	1.
$35+00.00$ R1	1123.97	532.63	532.63	1	6.8	63.69	3.6
36+00.00 R1	186.11	389.03	389.03	1	35.14	77.68	77.
37+00.00 R1	144.22	241.34	241.34	1	83.18	219.11	19.
$38+00.00$ R1	181.67	233.13	233.13	1	29.86	209.32	99.3
$39+00.00$ R1	175.67	291.38	291.38	1	26.29	103.97	103.9
40+00.00 R1	135.88	206.58	206.58	1	66.74	172.28	172.28
41+00.00 R1	197.77	247.5	247.5	1	54.22	224	22
42+00.00 R1	138.27	251.92	251.92	1	61.2	213.75	213.7
43+00.00 R1	180.51	219.95	219.95	1	29.27	167.55	167.55
44+00.00 R1	143.47	229.59	229.59	1	57.03	159.81	159.8
$45+00.00$ R1	186.85	241.33	241.33	1	6.05	116.81	116.8
46+00.00 R1	174.45	298.7	298.7	1	25.68	58.75	8.7
47+00.00 R1	127.15	188.14	188.14	1	19.77	84.16	84.16
48+00.00 R1	1161.97	350.21	350.21	1	44.42	118.86	118.86
49+00.00 R1	1127.53	536.1	536.1	1	46.76	168.86	168.86
$50+00.00 \mathrm{R} 1$	1197.67	602.21	602.21	1	19.26	122.26	122.26
51+00.00 R1	196.73	545.18	545.18	1	25.47	82.82	82.8
52+00.00 R1	180.72	328.62	328.62		197.24	412.41	412
53+00.00 R1	156.26	253.68	253.68	1	292.61	907.12	907.1
54+00.00 R1	1432.26	904.66	904.66	1	0	541.87	541

End Area Volume Report

Report Created: 10/23/2023
Time: 9:49am
Cross Section Set Name: PSE 231022
Alignment Name: HALN_BELKNAP
Alignment Name: HALN_BELKNAP
Input Grid Factor: 1 Note: All units in this report are in feet, square feet and cubic yards unles

Baselin
Station
--------------- Station Quantities
$54+00.00 \mathrm{R1}$ $54+00.00$ R1 $56+00.00 \mathrm{R} 1$ $56+00.00 \mathrm{R1}$
$57+00.00 \mathrm{R} 1$ $57+00.00$ R1
$57+66.12$ R1 $57+66.12 \mathrm{R1}$
$58+00.00 \mathrm{R} 1$ 99+00.00 R1 0+00.00 R1 $60+48.00$ R1

Grand Total:

End Area Volume Report - Narrow Build

Report Created: 10/23/2023
Time: 9:49am
Cross Section Set Name: PSE 231022 Alignment Name: HAL_ 231022 BELKNAP Alignment Name:

Note: All units in this report are in feet, square feet and cubic yards unless

Baselin

Station
tation

---- Cut ----- --

54+00.00 R $\begin{array}{lrrrrrrr} \\ 55+00.23 \mathrm{R1} & 1432.26 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$ $\begin{array}{lrrrrrrrr}55+00.23 \mathrm{R} 1 & 1 & 24.61 & 846.06 & 846.06 & 1 & 364.51 & 675.02 & 675.02 \\ 56+00.00 \mathrm{R} 1 & 1 & 0.46 & 46.43 & 46.43 & 1 & 389.59 & 1396.48 & 1396.48\end{array}$ $\begin{array}{lllrrrrrr}56+00.00 ~ R 1 ~ & 1 & 0.46 & 46.43 & 46.43 & 1 & 389.59 & 1396.48 & 1396.48 \\ 57+0000 & \text { R1 } & 1 & 0.57 & 1.91 & 1.91 & 1 & 191.07 & 1075.30\end{array} 1075.30$ $\begin{array}{lrrrrrrrr}57+00.00 ~ R 1 ~ & 1 & 0.57 & 1.91 & 1.91 & 1 & 191.07 & 1075.30 & 1075.30\end{array}$ $58+00.00$ R1 $60+00.00$ R1 $60+00.00 \mathrm{R} 1$
$60+48.00 \mathrm{R} 1$

Grand Total: 32.54
51.52 $\begin{array}{ll}1 & 51.52 \\ 1 & 87.59\end{array}$ 87.59
73.18 73.18
1
155.19
$1155.19 \quad 297.72$
$297.72-297$.

wors

MBCO A \rightarrow Nomen
FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS W BELFORT BLVD TO OAK BEND FOREST DR HORIZONTAL \& VERTICAL SURVEY CONTROL

2. THE CONTRACTOR MAY SUBMIT REV ISIONS TO THE TRAFIC CONTROL PLAN SHOWN

3. THE CONTRACTOR SHALL MAINTAIN INGRESS AND EGRSS TO PROPERTIES

5. THE TRAFFIC CONTROL PLAN SHOWN IN THESE PLANS ARE BASED UPON A

8. THE CONTRACTOR SHALL FOLLOW TXDOT STANDARD TCP (2-4)-18, TCP(3-1)-13 advanced warning signs

- The contractor shall install the advaced warning signs shown in these
plans prior to commencing any construction act Ivi iliss.

2. The contractor shall not remove the advanced warning signs without

PHASE 1, STEP 1
*PROPOSED TEMPORARY PAVEMENT, NORTH END OF BELKNAP
ROAD *PRAD

1. THE contractor shall construct ith proposed temporary pavement
 PHASE 1, STEP 2
*PROPOSED SOUTHBOUND BELKNAP ROAD
*PROPOSED EASTBOUD TOWNE WEST BOULEVARD
*PROPOSED WESTBOUND CLARK TOWNE ROAD
*PROPOSED EASTBOUND OLD RICHMOND ROAD
*PROPOSED EASTBOUND OLD RICHMOND ROAD
*PROPOSED WESTBOUND OAK BEND FOREST ROAD
2. install detour signage.
3. THE Contractor shal telimporaril close the southbound lanes of

4. THE CONTTACTOR SHALL TEMPORAALLL CLOSE THE EASTBOUND LANES OF TOWNE

5. THE CONTRACTOR SHALL TEMPORARILY CLOSE THE WEStbound Lanes of clark

6. THE CONTRACTOR SHALL TEMPORARILY Close THE EASTBOUND LANES OF OLD

*PASE 2 WESTBOUND TOWNE WEST BOULEVARD
*PROPOSED WESTBOUND CLARK TOWNE ROAD
*PROPOSED WESTBUND OLD RICHMO DOAD
7. install detour signage.
8. THE contractor shal tiemporarily close the southbound lanes of
9. THE CONTRACTOR SHAL TEMPRRARLL CLOSE THE WESTBOUND LANES OF TOWNE
WEST BOULEVARD TO THE LIMITS SHOWN ON THESE PLANS.

10. THE CONTRACTOR SHAL TEMPORARILY CLOSE THE EASTBOUND LANES OF CLARK

11. THE CONTRACTOR SHALL TEMPORARILY CLOSE THE WESTBOUND LANES OF OLD
RICHMOND ROAD TO THE LIMITS SHOWN ON THESE PLANS.

12. ThE CONTRACTOR SHALL TEMPorafily close the eastbound lanes of oak

PHASE 3
*PROPOSED NORTHBOUND BELKNAP ROAD
13. install detour signage.
14. The contractor shall temporarily close the northbound lanes of

15. THE CONTRACTOR SHALL TEMPORARILY CLOSE THE INSIDE EASTBOUND LANE OF
TOWNE WEST BOULEVARD TO THE LIMITS SHOWN ON THESE PLANS.
16. THE CONTRACTOR SHALL TEMPORARILY CLOSE THE INSIDE WESTBOUND LANE OF
TOWNE WEST BOLLEVARD TO THE LIMITS SHOWN ON THESE PLANS.
17. THE CONTRACTOR SHALL TEMPORARILY CLOSE THE INSDEE EASTBOUND LANE OF
18. THE CONTRACTOR SHAL TEMPORARILY CLOSE THE INSIDE WESTBOUND LANE OF
CLARK TOWNE ROAD TO THE LIMITS SHOWN ON THESE PLANS.
19. ThE CONTRACtor Shall temporatily close the center lane of old

20. Install peremanent signing and pavement marking south of oak bend

PHASE 4
*PROPOSEd belknap median, north of belknap

- THE CONTTACTOR SHALL TEMPORARILY CLOSE THE NORTHBOUND OUTSIDE LANE OF

3. THE CONTRACTOR SHAL TEMPORARILY CLOSE THE SOUTHBOUND OUTSIDE LANE OF
BELKNAP ROAD TO THE LIMITS SHOWN ON THESE PLANS.
4. the contractor shall construct the proposed median along belknap road
as shown on These plans.
5. Instal remaining permanent signing and pavement markings north of
6. REMOVE EXISTING PAVEMENT MARKING OUTSIDE, LANE ONLY FROM bL

Phase 1 STEP 1 Channelizing devices					
baseline		$\xrightarrow[\text { STATIN }]{\text { BEG }}$	STATION	MAXIMUM DEVICE	device type
TCP_DET_01	RIGHT	0+71	2+07	35	VERTICAL PANELS
TCP_DET_01	LEFT	0+71	2+07	35	VERTICAL PANELS

PHASE 1 STEP 2 CHANNELIZING DEVICES					
baseline		$\begin{aligned} & \text { STEGIN } \\ & \text { STATION } \end{aligned}$	$\text { STATION }_{\text {END }}$	MAXIMUM DEVICE SEA DEVICE SPACING	DEVICE TYPE
HALN_BELLFORT	RIGHT	19+23	$20+63$	N/A	LOW PROFILE CONCRETE BARR
HALN_BELLFORT	LEFT	21+15	22+96	35	CONSTRUCTION BARREL
HALN_BELKNAP	LEFT	$13+28$	13+68	10	CONSTRUCTION BARREL
HALN_BELKNAP	LEFT	15+42	$25+46$	N/A	LOW PROF ILE CONCRETE BARRIER
HALN_BELKNAP	LEFT	$\frac{25+87}{3+8}$	33+65	N/A	LOW PROFILE CONCRETE BARRI
HALN_BELKNAP	LEFT	$33+92$		N/A	LOW PROFILE CONCRETE BARRI
HALN_BELKNAP	LEFT	$36+72$	$39+60$	N/A	LOW PROFILE CONCRETE BARRI
HALN_BELKNAP	LEFT	39+72	$40+87$	N/A	LOW PROFILE CONCRETE BARRIER
HALN_BELKNAP	LEFT	$41+22$	42+71	N/A	LOW PROFILE CONCRETE BARRI
HALN_BELKNAP	LEFT	$43+06$	$44+23$	N/A	LOW PROFILE CONCRETE BARRIE
HALN BELKNAP	LEFT	$\frac{44+43}{45+02}$	${ }^{44+82}$	N/A	Low Profile concrete barri
HALN BELKNAP	LEFT	45+02	47+77	N/A	LOW PROFI
AL BEKKAP	LEFT	$49+64$	52+27	NA	OW Prop te concr
		49.64	527	NA	WRoflle Concrete bar
HALN_EEEKNAP	LEFT	$52+53$	56+87	N/A	LOW PROFILE CONCRETE BARR
HALN-BELKNAP	LEET	- $\frac{56+99}{61+10}$	$\frac{58+34}{62+06}$	N/A	LOW PROFILE CONCRETE BARRIER
HALN TOWNE W	EFFT	9+45	$10+50$	10	CONSTRUCTION BARREL
HALN_TOWNEW	EFT	10+19	10+50	10	Onstruction barie
HALN_TOWNEW	RICHT	8+00	N/A	10	CONSTRUCTIION BARREL
HALN_CLARK T	RICHT	$10+27$	10+50		CONSTRUCTION BARREL
HALN_CLARKT	RICHT	9+72	$10+50$	10	CONSTRUCTION BARREL
HALN_CLARKT	${ }_{\text {RIICHT }}$	9+72	N/A		CONSTRUCTION BARREL
HALN_ORICH_W	RICHT		N/A		CONSTRUCTIION BARREL
HALN_ORICH_W	LEFT		$138+00$		VERTICAL PANELS
HALN_ORICH-W	LEFT	137+47	$138+00$	10	CONSTRUCTIION BARREL
HALN_OAKBEND	LEFT	9+84	N/A	10	CONSTRUCTION BARREL
HALN_OAKBEND	RICHT	9+84	10+50	10	VERTICAL PANELS
HALN_OAKBEND	RICHT	10+38	$10+50$	10	CONSTRUCTION BARREL
TCP_DET 01	$\xrightarrow[\text { LEFT }]{\text { LEFT }}$	$\frac{0+44}{1+02}$	$\xrightarrow{1+02}$	10 30	VERTICAL PANELS
	${ }_{\text {LEFFT }}^{\text {LEF }}$	1+02	$\xrightarrow{1+85}$	30	VERTICAL PANELS
TCP_DET_01	RIGHT	0+56	2+03	30	CONSTRUCTION BARREL
TCP_DET_O2	LEFT	$1+47$	2+95	30	CONSTRUCTION BARREL

PHASE 2 CHANNELIZING DEVICES					
bASELINE		BECIN STATION	STATION	MAXIMUM DEVICE SPACING	DEVICE TYPE
HALN_BELLFORT	RIGHT	13+58	$13+63$	10	CONSTRUCTION BARRE
HALN_BELKNAP			25+24	V/A	LOW PROFILE CONCRETE BARRIER
haln_belknap		25+70	33+65	V/A	Low
HALN_BELKNAP	LEFT	33+92	$36+45$	V/A	LOW PROF ILE CONCRE
HALN_BELKNAP	FT	36+91	39+60	N/A	LOW PROFILE CONCRETE BARRIER
HALN_BELKNAP	LEFT	39+72	40+87	N/A	LOW PROFILE CONCRETE BARRI
HALN_BELKNAP	LEFT			N/A	LOW PROFILE Concret
HALN_BELKNAP		43+06	$44+23$	N/A	Low prof fle concre
HALN二BELKNAP	LEFT	44+43	$44+82$	NA	LOW PROFFILE CONCRE
HALN_BELKNAP	LEFT	$45+02$	47+64	N/A	LOW PROFILE CONCRETE BARRIER
HALN_BELKNAP	LEFT	$47+95$	49+30	N/A	LOW Profile concrete barrit
HALN_BELKNAP	EFT	${ }^{49+64}$	$52+27$	N/A	LOW PROFFILE CONCRETE BARRI
HALN_BELKNAP	LEFT	52+53	56+87	N/A	LOW PROFILE CONCRETE BARRII
HALN_BELKNAP	LEFT	56+99	$58+65$	N/A	LOW PROFILE CONCRETE BARRIER
HALN_BELKNAP	LEFT	$58+65$	58+82	10	VERTICAL PANELS
HaLN_BELKNAP	LEFT	$61+10$	62+06	35	CONSTRUCTION BARREL
HALN_TOWNEW	RICHT	10+16	10+50	10	CONSTRUCTION BARREL
HALN_TOWNEW	RICHT	9+86	10+50	10	CONSTRUCTION BARREL
haln_townew	LEFT	9+75	N/A	10	CONSTRUCTION BARREL
haln_CLARK T	LEFT	9+81	10+50	10	CONSTRUCTION BARREL
HALN_CLARK T	LEFT	$10+17$	10+50	10	CONSTRUCTION BARREL
haln_CLARK T	RICHT	$9+69$	N/A	10	CONSTRUCTION BAA
HALN_ORICH_W		$137+5$	$138+00$	10	CONSTRUCTION BARREL
HALN_ORICH_W	HT		$138+00$	10	Pa
HALN_ORICH_W	LEFT	$136+53$	V/A	10	CONSTRUCTION BARREL
HALN_OAKBEND	RIGHT	9+82	10+50	10	VERT ICAL PANELS
HALN_OAKBEND	RIGHT	$9+82$		10	CONSTRUCTION BARREL
HAL $=$ OAABEEND	LEFT	9+99	10+50	10	CONSTRUCTION BARREL
TCP De Det	LeFt	- 139	+ +39	10	VERTICAL PANELS
TCP_DET-01	LEFT	1+85	2+80	15	VERTICAL PANELS
TCP_DET_01	RICHT	0+75	2+02	30	CONSTRUCTION BARREL
TCP_DET_00	LEFT	$1+67$	2+98	30	CONSTRUCTION BARREL

PHASE 4 CHANNELIZING DEVICES					
baseline		STATION	STATION	MAXIMUM DEVICE SPACING SPACIN	device type
haln_belknap	RIGHT	$56+58$	58+35	35	CONSTRUCTION BARREL
HALN_BELKNAP		$56+58$	$58+35$		CONSTRUCTION BARREL
HALN_BELKNAP	RIGHT	59+11	60+51	N/A	LOW PROFILE CONCRETE BARRIER
HALN BELKNAP	LEET	59+20	60+43	N/A	LOW PROFILE CONCRETE BARRIER
HALN_BELKNAP	LEFT	$\frac{61+10}{61+10}$	$\frac{63+19}{63+19}$	$\frac{35}{35}$	CONSTRUCTION BARREL
	${ }_{\text {LIEFT }}^{\text {LIGHT }}$	- $61+10$	$\frac{63+19}{2+93}$	35	CONSTRUCTION BARREL

traffic control plan horizontal alicnments
tCP DETOUR 01

Beginn ing chain TCP-DET-01 description
feoture:
Ceom-Secondary
N 13,810,129.3167 E 3,041,037.9245 Sto
Course from 167 to PC TCP_DET_01_3 $\mathrm{N} 1^{\circ} 20^{\prime} 17 " \prime^{\prime} \mathrm{E}$ Dist 185.8476 Curve Doto

	350.2+1.51 ${ }^{\text {a }}$	13, 810, 340.7648	E	3, 041,042. 8638
	350 ${ }^{\text {310 }}$			
Tongent	25.6582			
Lendius	80.5000			
Externol	- $\begin{array}{r}3.9902 \\ 48.8928\end{array}$			
Mid. ors. stotion				
P. P c. c : ${ }^{\text {a }}$ Stotion	2+35.52 ${ }^{\text {N }}$	13,810, 362.0315	$\underset{F}{E}$	3,041,028. 5087

$$
\begin{gathered}
\text { Curve Doto } \\
*
\end{gathered}
$$

course from PT TCP_DET_01_4 to $168 \mathrm{~N} 2^{\circ} 15^{\prime} 21$ W W Dist 50.0000
Point 168 N $13,810,453.8620$ E $\quad 3,041,012.8251$ Sto $\quad 3+30.15$

tCP DETOUR 02

Beginn ing choin TCP-DET 02 description
Feature:
Ceoom Secondory

Point 165
N $13,810,035.8761 \mathrm{E} \quad 3,041,044.8411 \mathrm{St}$都

$13,810,132.2609 \mathrm{E}$
3,041,051.8382
Course from Pt TCP_DET_02_3 to PC TCP_DET_02_6 N 90 20'49"E Dist 40.8750

1+87.05 N 13, 810, 221.5038 E
3,041,066.5274
course from PT TCP_DET_O2_6 to $166 \mathrm{~N} 3^{\circ}$ 24' $^{\prime} 18^{\prime \prime}$ E Dist 85.2223
Point $166 \quad N \quad 13,810,332.7127 \mathrm{E} \quad 3,041,073.1443$ Sta $\quad 2+98.41$

TCP DETOUR 03

point $238 \quad N \quad 13,810,180.9469$ E $3,040,947.2546$ Sta
Course from 238 to $239 \mathrm{~N} 87^{\circ} 11^{\prime} 48^{\prime \prime}$ E Dist 46.0457
Point 239 N 13,810,183.1988 E 3,040,993.2452 Sto 10+03.95
Course from 239 to $240 \mathrm{~N} 87^{\circ} 11^{\prime} 48^{\prime \prime} \mathrm{E}$ Dist 46.0457
Polnt 240 N 13,810,185.4508 E 3,041,039.2358 Sta $10+50.00$

tCP DETOUR 04

Beginning choin TCP-DETT-04 description
$N \quad 13,810,518.8298$ E $\quad 3,040,997.8982$ Sto $0+0000$
Course from 151 to PC TCP_DET_04_3 N $2^{\circ} 111$ 41" W Dist 34.5261 O+00.00

[PG				
FORT BEND COUNTY, TEXAS				
BELKNAP ROAD IMPROVEMENTS W BELLFORT BLVD TO OAK BEND FOREST DR TRAFFIC CONTROL PLANS GEOMETRIC DATA ALL PHASES				
	RPS PRoJ :	DATE	SCALE	Sheet No
	008169	2023		
DESIGNED BY RPS	$\xrightarrow{\text { DRAWN BY }}$ RPS		$\underbrace{\text { RPS }}_{\text {VERFEED } \mathrm{dY}}$	39

TCP DETOUR 05

Beginning choin TCP-DET 05 description
Feoture: Ceom-Secondary

 Curve Doto

Curve Dota					
Curve TCP_DET_05_1 P. 1. Station	0+25.00	NT	13,809, 233.7258	E	3,040, 991.0441
Degree					
Tongent	25.0013				
	2, 012.50000				
Externar	49.9987				
P. C. Station		N			
p. T. station	0+50.00		133,809, 2588.7212		$\begin{aligned} & 3,040,991.5840 \\ & 3,043,003.6147 \end{aligned}$

 curve Doto

Curve Doto

Course from PT TCP_DET_05_3 to $148 \mathrm{~N} 1^{\circ}$ O2' $48^{\prime \prime} \mathrm{W}$ Dist 50.0000
Point 148 N 13, 809, 446.8434 E 3,040, 981.7417 Stס

tCP DETOUR 06

Beginning chain TCP-DET_06 description

$13,810,373.2332 \mathrm{E} \quad 3,041,112.1622 \mathrm{Sto}$
$0+00.00$
Point $149 \sim N \quad 13,810,373.2332 \mathrm{E} \quad 3,041,112.1622 \mathrm{St}$

Curve Doto					
Curve TCP_DET_06_3		NT	13, 810, 377.0418	E	3,041, 195. 0573
deta					
(tangent	-31.1912				
	344.5000				
Externora					
	-O+5.1. $1+149$ 100	N	13,810, 375.6102		041,
		N	13, $1310,031.4733$		3,041, 179.7103
	${ }^{22^{\prime}}{ }^{10} 0^{1014} \mathrm{C}$				

Course from PT TCP_DET_06_4 to $150 \mathrm{~N} 86^{\circ} 31^{\prime} 15^{\prime \prime}$ E Dist 118.069
point 150 N $13,810,377.4551 \mathrm{E} \quad 3,041,413.1248$ Sta

tCP DETOUR 07
${ }_{241}^{\text {Cho in }} 242$ TCP 243 DET-07 conto ins
Beginning choin TCP_DET_-07 description

Course from 241 to $242 \mathrm{~N} 87^{\circ} 00^{\prime} 31$ " E Dist 93.0564
Course from 242 to $243 \mathrm{~N} 87^{\circ} 00^{\prime} 31^{\prime \prime} \mathrm{E}$ Dist 75.2522
Point 243

tCP DETOUR 08
Choin
244
245
246
TCP DET
Beginning choin TCP-DDT-08 description
course from 244 to $245 \mathrm{~N} 86^{\circ} 39^{\prime} 49^{\prime \prime}$ E Dist 55.0000

Coint 246 N

TCP DETOUR 09
Choin TTP
247
248
249
_DET_09 conto ins
Beginning choin TCP-DET-09 description
Point $247 \quad$ N $13,806,828.5662$ E $\quad 3,041,055.7560$

Course from 248 to $249 \mathrm{~N} 86^{\circ} 31^{\prime} 45^{\prime \prime} \mathrm{ED}$ Dist 41,9415

$3+01.54$

Point 241 N 13,809,060.9822 E 3,040, 860.6555 Sta 8+81.69
point $242 \quad N \quad 13,809,065.8385$ E $\quad 3,040,953.5851$ Sto 9+74.75
13,809, 069. 7656 E $3,041,028,7348$ sto
$10+50.00$

$\begin{array}{llll}\text { Point } 244 & N \quad 13,807,972.8585 \text { E } & 3,040,983.3213 & \text { Sto } \\ 9+40.86\end{array}$

E10

Course from 247 to $248 \mathrm{~N} 86^{\circ} 31^{\prime} 45^{\prime \prime}$ E Dist 61.5215 Sto $9+46.54$
Point $248 \quad \mathrm{~N} \quad 13,806,832.2907 \mathrm{E} \quad 3,041,117.1646$ Sto $\quad 10+08.06$
Point $249 \quad N \quad 13,806,834.8298$ E $\quad 3,041,159.0292$ Sto $\quad 10+50.00$
rPs
575 N . Dair AAhloct, Sulue 700, Houston, Texas 7079
FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
bll blo oak bend forest
temporary barrels pal panels
--. Low prof ile concrete barrie
\longmapsto TYPE III BARRICADE
TIV Proposed bridge construction
notes:

2. THE FUL DEPTH SAW CUT, CUUB REMOVAL AND

REDOVAL PLANS AND SHALL NOT BE PAID FOR UNOE
 CONTRACTOR NFORMATION ONLY.

BELKNAP
FROM STA 59+05.25
TO STA 60+40.99

- construct temporary pavement along
- TRAFFIC ON EXISTING LANES ON

BELKNAP
FROM STA 58+80.04
TO STA 60+63.89

- Local traffic only on the proposed detour. CONSTRUCT THE PRODOSED SOUTHBOUND
PAVEMENT WITHN THE SHOWN LMITS.

BELKNAP
FROM STA 48+53.26
TO STA 58+31.16

- Construct THE Proposeo southouno

BELKNAP
FROM STA 13+37.87
TO STA $47+87.18$

- TRef fic in exsinm noimouno ine

NO WORK IN THIS PHASE
WITHIN THE FOLLOWING
STATIONS
from sta 47.87.18 to sta 48.53 .26
from sta 58.31 .16 to sta 58.80 .04

ZIZU Temporary pavement
Q TEMPORARY LANE CLOSU
temporary barrels
Low concrete barrit
\longmapsto TYPE III BARRICADE
TYPE III BARRICADE
notes;

1. SEE ChanNelization tables for device type
AND Spacinc to all phases.

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
W BELLFORT BLVD TO OAK BEND FOREST
TRAFFIC CONTROL PLANS
TYPICAL SECTIONS PHASE 1 STEP 2

Pros	RPS Prou *	DATE	Scale	SHEET No
17-2-11	008169	2023		
eESISNED QY	drawn by	CHECKED BY	verfed by	42

OAK BEND FOREST DR
FROM STA 9+83.86
TO STA $10+50.00$

- TRAFFIC ON Exsting eastouno lane

OLD RICHMOND RD
FROM STA $136+62.57$
TO STA 137+90.80

- ToAFFic on Exisimg westouno lane

CLARK TOWNE RD
FROM STA 9+81.58
TO STA $10+50.00$

Construct THE Proposeo wesitoun

TOWNE WEST BLVD
FROM STA 9+85.78
TO STA $10+50.00$

- TRAFFIC ON ExISTMC MESTBOUNO LANE
- constuct ter propose Eastiguno

4 PRMOPOSED TEMPOOARYY TRAFFIC PATTER
\square pavement constructed in previous phas pavement constructed in this phase ZTD \quad temoroary paveneni
TEMPORARY LaNE Closure
temporart barkels
-_ Low Proc le concrete barri
\longmapsto TYPE III BARRICADE
\triangle PROPOSED BRIDGE CONSTRUCTIO
NOTES:

1. SEE ChanNelizarion tables for device type
ANo Spacinc to all phases.
2. THE FULL DEPTH SAW CUT, CURB REMOUAL AND

REMOVALPLANS ANO SHALL NOT QE PAID FOR UNDER

OAK BEND FOREST DR
FROM STA 9+82.34
TO STA $10+50.00$

- TRAFFIC ON proposed westbonn lane

OLD RICHMOND RD
FROM STA 136+62.60
TO STA 137+90.80

- Trafel on proposed Estrouno lane
- Constuct the proposi westouno

CLARK TOWNE RD
FROM STA 9+81.92
TO STA $10+50.00$

- constuct ter propose Eastigowno

TOWNE WEST BLVD
FROM STA 9+84.62
TO STA $10+50.00$

- TRAFFIC ON proposed Eastouno lane
- Constucct mit proposg westouno

NO WORK ON BELKNAP RD
DURING THIS PHASE

4 PRMOPORED TEMPOOARYY TRAFFIC PATTER
\square pavement constructed in previous phas Pavement constructed in this phase [7/Z temporary pavement
TEMPORARY Lane closure
TEMPORARY BARRELS
-_ Low proof Ls concrete barri
\longmapsto TYPE III barricade
PROPOSED BRIDGE CONSTRUCTION
Notes:

BELKNAP ROAD IMPROVEMENTS
w bellfort blvd to oak bend forest
TRAFFIC CONTROL PLANS TYPICAL SECTIONS PHASE 2

CNTY Pros	pes	DATE	SCALE	Shet no
17-2-11	008169	2023		
sineo Br	dramN by	CHECKED BY	verifeo br	44

BELKNAP
FROM STA 59+19.22
TO STA $60+63.89$

BELKNAP
FROM STA 48+86.96
TO STA 59+19.22

- TRAFFC ON proposed suuthouno lane
- Construct THE proposso Morthouno

BELKNAP
FROM STA 13+37.87
TO STA 48+86.96

- TRAFFC ON Proposed southbond lane
- Construct THE Proposeg Morthouno

NO WORK ON TOWNE WEST,
CLARK TOWNE, OLD RICHMOND AND OAK BEND FOREST DURING THIS PHASE.

ZIIZ TEMPRERARY Pavement
TEMXP TEMPary lane closure
(8) temporary barrels
temporary vertical panels
LOW PROF ILE CONCRETE BARRIE

- TYPE III BARRICADE
notes:

1. SEE ChanNelizat ion tables for device type
AND Spacinc to all phases.

 REGARDNG THE REMOYAL IS SHOU

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS w bellfort blvd to oak bend forest do TRAFFIC CONTROL PLANS TYPICAL SECTIONS PHASE 3

\qquad

mporahy barrels pan

- Low prof ile concrete barrie
- TYPE III BARRICADE

PROPOSED bridce construction
notes:

2. THE FUL DEPTH SAM CUT, CURB REMOVAL AND

CONTRACTOR NFORMATION ONLY.

BELKNAP
FROM STA 59+19.22
TO STA 60+42.86
traffic on constructed pavement
construct proposed curb ano median.

Existing traffic patiern to
TEMPORARILY CloSE
PROPOSED TEMPRARY TRAFFIC PATtERN
\uparrow PROPOSED TEMPORARY TRAFFIC PATTERN \square PAvEMENT CONSTRUCTED IN PREVIOUS PHASE Z/7] Pavement constructed
TEMPORARY Lane closuiz
(8) (8) temporary barrels

- \#n/t temporary vertical panels
-.. Low prof ILE Concrete barrier
\mapsto TYPE III barricade
PROPOSED BRIDCE CONSTRUCTION
Notes:

 COGAAD ING THE REEOOAL IS SHOW FOR THE
CONTRCTOR NEORMI ION ON YH

rps

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
bellfort blvo to oak bend forest
TRAFFIC CONTROL PLANS PHASE 1 STEP

The Barricade and Construction Standard Sheets (BC sheets) are intended devices, construction pavement markings, and typical work zone signs, The information contained in these sheets meet or exceed the requirements
shown in the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
2. The development and design of the Traffic Control Plon (TCP) is the esponsibility of the Engineer.
3. The Contractor may propose changes to the TCP that are signed and sealed by a licensed professional engineer for approval. The Engineer may develop,
. The Contractor is responsible for installing and maintaining the traffic control devices as shown in the plans. The Contractor may not move or change
the approximate location of any device without the approval of the Engineer.
5. Geometric design of lane shifts and detours should, when possible, meet the applicable design criteria contained in manuals such as the American
Association of State Highway and Transportation Officials (AASHTO), "A Policy on Geometric Design of Highways and Streets," the TXDOT "Roadway Design Manual" or engineering judgment.
6. When projects abut, the Engineer(s) may omit the END ROAD WORK, TRAFFIC FINES DOUBLE, and other advance warning signs if the signing would be redundant and the work areas appear continuous to the motorists.
adjacent project is completed first, the Contractor shall erect the adjacent project is completed first, the Contractor shall erect the necessary warning signs as shown on these sheets,
directed by the Engineer. The BEGIN ROAD WORK NEXT X MLES sign shall be revised to show appropriate work zone distance.
7. The Engineer may require duplicate warning signs on the median side of divided highways wher
justify the signing.
8. Allsigns shallbe constructed in accordance with the details found in the "Standard Highway Sign Designs for Texas," latest edition. Sign details
not shown in this manual shall be shown in the plans or the Engineer sha not shown in this manual shall be shown in the plans or the Engineer
provide a detait to the Contractor before the sign is manufactured.
9. The temporary traffic control devices shown in the illustrations of the $B C$ sheets are examples. As necessary, the Engineer will determine the mos
appropriate traffic control devices to be used. appropriate traffic control devices to be used.
10. Where highway construction or maintenance work is being undertaken, other than mobile operations as defined by the Texas Manual on Uniform Traffic Controldevices, CSJ limit signs are required. CSJ limit signs are shown
on BC(2). The OBEY WARNING SIGNS STATE LAW sign, STAY ALERT TALK OR TEXT LATER and the WORK ZONE TRAFFIC FINES DOUBLE sign with plaque shall be erected in advance of the CSJ limits. The BEGIN ROAD WORK NEXT X MLES,
CONTRACTOR limits. For mobile operations, CSJ limit signs are not required.
11. Traffic controldevices should be in place only while work is actually in progress or a definite need exists.
12. The Engineer has the final decision on the location of all traffic control devices.
13. Inactive equipment and work vehicles, incluaing workers private vehicles must be parked away from travellanes. They should be as close to th or as approved by the Engineer.

Workers on foot who are exposed to traffic or to construction equipment within the right-of-way shall wear high-visibility safety apparel meeting
the requirements of ISEA "American National Standard for High-Visibility the requirements of ISEA "American National Standard for High-Visibility
Apparel," or equivalent revisions, and labeled as ANSI $107-2004$ standard performance for Class 2 or 3 risk exposure. Class 3 garments should be performance for Class 2 or 3 risk exposure. Class 3 garments s.
considered for high traffic volume work areas or night time work.
2. Except in emergency situations, flagger stations shall be illuminated when flagaing is used at night.

COMPLIANT WORKZONE TRAFFIC CONTROL DEVICES
Only pre-qualified products shall be used. The "Compliant Work Zone Traffic Control Devices List" (CWZTCD) describes pre-qualified products and their sources.
2. Work zone traffic control devices shall be compliant with the Manual for Assessing safety Hardware (MASH).

BARRICADE AND CONSTRUCTION GENERAL NOTES AND REQUIREMENTS

OTx0	bc-2.l.gn				
	Noverber 2002	cowr	secr	${ }^{\text {\%ов }}$	Hstancr
	7.13				
cole $\begin{aligned} & \text { 9.07 } \\ & 5\end{aligned}$	-	${ }^{\text {oss }}$		(eny	Stuter no.

YPICAL APPLICATION OF WORK ZONE SPEED LIMIT SIGNS
Work zone speed linits shall be regulotory, estoblished in occordance with the "Procedures for Estoblishing Speed Zones,
zone speed imits shalbe reguatory, estabished in occordance with the erpoceaures fort Estabishing Speed Zones,
ond opproved by the Texas Tronsportotion Commission, or by City Ordinonce when within Incorporated City Limits.
Siging shom tor
one difection only Reduced speeds should only ocsu \quad of work activity and not throughout the entire project

GUIDANCE FOR USE:
LONG/INTERMEDIATE TERM WORK ZONE SPEED LIMITS
gENERAL NOTES
This type of work zone speed limit should be included on the design
the troffic control plans when restricted geometrics with a lower design
speed ore present in the work zone and modification of the geometrics to
speed ore present in the work zone a
a higher design speed is not feasible.
Long/Intermediate Term Work Zone Speed Limit signs, when approved os described above, should be posted ond visible to the motorist when work activity is present. a reduced speed for . defined as a change in the roadway that requires
a) rough road or domoged povement surfocie

Substantial alteration of roodway geometrics (diversions)
d) grade
e) width
f) other conditions readily apparent to the driver

As long as any of these conditions exist, the work zone speed limit signs
should remin should remain in place.

SHORT TERM WORK ZONE SPEED LIMITS
This type of work zone speed limit may be included on the design of
the traffic control plans when workers or equipment are not behind concre
barrier, when work activity is within 10 feet of the traveled way or actuolly in the traveled way.

Short Term Work Zone Speed Limit signs should be posted and visible to the motorists only when work activity is present. When work activity is not present, signs shall be removed or covered.
(See Removing or Covering on BC(4)
. Regulatory work zone speed limits should be used only for sections of construction
projects where speed control is of major importance
2. Regulotory work zone speed limit signs shall be placed on supports at a 7 foot minimum
mounting height.
3. Speed zone signs are illustrated for one direction of travel and are normally posted
for each dind
4. Frequency of work zone speed limit signs should be:

$$
\begin{aligned}
& 40 \text { mph and greoter } 0.0 \text { to } 2 \text { miles } \\
& 35 \text { mph and less } \\
& 0.2 \text { to } 1 \text { mile }
\end{aligned}
$$

5. Regulatory speed limit signs shall have black legend and border on a white reflective background (See "Reflective Sheeting" on BC(4))
6. Fabrication, erection and maintenance of the"ADVANCE SPEED LIMIT"(CW3-5) sign,

7. Turning signs from view, laying signs over or down will not be allowed, unless as otherwise noted under "REMOVING OR COVERNG" on BC((4).
8. Techniques that may help reduce traffic speeds include but are not limited to
\qquad
B. Flagger stationed next to sign.
C. Portable changeable message sign (PCMS)
O. Low-power (drone) radar transmit
9. Speeds shown on detais above are for illustration only
0.F or more specific guidance concerning the type of work, work zone conditions and factors impacting allowable regulatory construction speed
zone reduction see $T \times D O T$ form $* 1204$ in the $T \times D O T$-form system.

WORK ZONE PAVEMENT MARKINGS
GENERAL
-The Contractor shalle e resonsibile for maintaining work zone ond
existing povement morkings, in occordonce with the stondord

2. Color, paterns and dimensions shal be in conformance with the
3. Additional supplemental povement morking details may be found in the
4. Povement markings shallbe installed in occorrdonce with the TMUTCD
and as stown on the plons.

shown on the Stondord Plon Sheet WZ(STPM).
6. When standard povement markings ore not in ploce ond the roodway
is opened to trafici, DO Nor PASS signs shall be erected to mark is
the begegining of the sections where passing is prohibited ond
pass wiTh C AREE sing ot the begne
PASS WTH CARE signs ot tic
is permitted.
7. Al work zone povement morkings shal be instilled
with Item 662 , "Work Zone Povement Marking.'

RAISED PAVEMENT MARKERS
. Raised povement markers are to be placed occording to the patterns

- Rosed poveme

PREFABRICATED PAVEMENT MARKINGS

1. Removoble pre fobricoted povement morkings shall meet the requirements
of ows-824]
2. Non-removoble preforicoted povement morkings (foil back) shall meet
the requirements of DNS-8240.

MAINTAINING WORK ZONE PAVEMENT MARKINGS
. The Controctor wilbe responsible for maintoining work zone povement
2. Work zone pevement morkings shall be inspected in occordance with
device inspections as required by Form 599 .
3. The markings should provide a visible reference for a minimum
distance of 300 feet during normal doyvioht hours ond 160 feet

Workins toin to met thooway geometrics,

REMOVAL OF PAVEMENT MARKINGS 1. Povement markings that ore no longer oppicioble, could create contusion
or direct o motorist toward or into the closed portion oi the roodvoy sholl be removed or obliterited before the rodway is opened to traffic,
2. The obove shall ot apply to detours in ploce for less than three
doys, where flogegers ond or sufficient channelizing devices ore used
in idys, where fllagers ond/or sufficient chomnelize
3. Povement morkings shall be removed to the fullest extent possible,
so as not to leve
odiscernoble markina. This shall be by
 Popevent Morkings ond Morkers
4. The removal of povement morkings may reauire resurfocing or seal
coating portions of the roodway os described in ltem 677 .
5. Subiect to the opprovol of the Engineer, ony methoo thot proves to be
6. Blast cleoning moy be used but will ot be required unless speciically
6. Blast clearing may be
shown in the plons.
. Over-panting of the markings SHALL NOT BE permitted.
8. Removolof raised povement morkers sholl be as directed by the
Engniner.
9. Removolof existing povement markings ond markers wilbe paid for
directly in occordance with
liem 677 , ELIMNATNG EXTTING PAVENENT
 10.Black-out marking tope moy be used to cover conficiting existing
morkings for periods less than two weeks when opproved by the Enginea.

Staples or nalls shall not be used to secure TEMPORARY FLEXIBLE-REFLECTIVE ROADWAY MARKER TABS TO THE PAVEMENT SURFACE

- Temporary flexile-refective roodway morke
shol meet the requirements of ows -8242 .

Tobs detailed on this sheet ore to be inspected ond occepted by the
Engineer or designated reperesentitive. Samping and testing is not ninnerl or designated representative. Sompling and testing is not
ormaly required, however ot the option of the Engineer, either "A" or "B" belouw may be imposed to ossurue ounaity before p plccement on the
A. Select five (5) or more tobs ot rondom from eoch hot or shiment
ond sumbit to the Constuction ivision,
Section to Section to determine specificoction complionce.
B. Select five (5) tobs ond perform the following test. Affif five
(5) toos at 24 inch intervals on on ospholicic povement in
 run over the markers with the tront ond rear thites of ot speped
of 35 to 40 mies per hour, four (4) times in each direction. No of 35 to 40 mies per hour, four (4) times in ecch direction.
more thon one (1) out of the five e 5 refefective surfocices sholl
be lost or disploced os or ersut of this test. be lost or disploced os o result of this test.

```
S. Smolldesign vorionces may be noted between lob monufocturers.
```

See Standard Sheet WZ/STPM for tob placement on new povements.
Stondord Sheet TCP $(7-1)$ for too plocement on seal coot work.

RAISED PAVEMENT MARKERS USED AS GUIDEMARKS 1. Roised povement markers used os guidemorks shal be from the opproved
product list, ond meet the reauirements of ONS -4200 .
2. Al temporary construction risied povement
project sholl be of the same monufocturer.
3. Adhesive for guidemark shal be bituminous material hot opplied or
surfoces.
Guidemarks shall be designoted os:
YELLOW - (two amber reflective surfoces with yellow body.
WHITE - (one silver reflective surfoce with nhite body).

```
DEPARTMENTAL MATERIAL SPECIFICATIONS
PavEment markers (reflectorIzo)
TRAFFIC BUTTONS
EPOXY AND ADHESIIESS
MARKERS DMS-6100
DMS-6130
CRMANENT PREFABRICATED PAVEMENT MARKINGS DMS-8240
```



```
|
A list of prequalified reflective roised povement markers
A list of prequalified reflective rised pavement morkers,
Mon-rifective troftic buttons, rodway morker tobs and other
```

SHEET 11 OF 12

Texas Department of Transportation

BARRICADE AND CONSTRUCTION PAVEMENT MARKINGS				
$B C(11)-21$				
Fute: b-2.1.dgn				
(0)Tx00 Febtuary 1998		Tser	\%8	Hentar
	${ }_{0}$ OST		cownr	Shetr Mc

CENTER LINE \& NO-PASSING ZONE BARRIER LINES FOR TWO-LANE, TWO-WAY HIGHWAYS

EDGE \& LANE LINES FOR DIVIDED HIGHWAY
White

$$
\begin{aligned}
& \text { REFLECTORIZED PAVEMENT MARKINGS } \\
& \text { s moy be sustituted for reflectorized povement markings. }
\end{aligned}
$$

LANE \& CENTER LINES FOR MULTILANE UNDIVIDED HIGHWAYS

Prefobricated markings may be substituted for reflectorized povement markings.

RAISED PAVEMENT MARKERS - PATTERN B ,
Ralsed pavement markers - Pattern b

Preforicoted morkings moy be substituted for refiectorized pavement marking.

BELKNAP ROAD

$1 \prod_{\|}^{11} \quad 1$

	CALL BEFORE YOU DIG! TEXAS ONE CALL PARTICIPANTS REQUEST 48 OR BLAST - STOP CALL Texas One Call System 1-800-DIG-TESS			
A $01 / 2 / 240$	OAK BEND Fon	ST ORVE EN	Tersection	${ }^{6.0}$
FORT BEND COUNTY, TEXAS				
BELKNAP ROAD IMPROVEMENTS W BELLFORT BLVD TO OAK BEND FOREST DR BELKNAP RD MEDIAN ISLAND DETAIL				
	RPS Prou *	Date	Scale	$\frac{\text { SHEE } 1 \text { OF } 1}{\text { SHEET No }}$
	008169	2023		
	${ }_{\text {drawn }}^{\text {Pr }}$ P	$\xrightarrow{\text { CHECKED }}$ Qr	VERERED BY $_{\text {RPS }}$	121

										drivewar	MMARY									
DR I VEWAY NUMBE	baseline	cl station	OIRFSET	$\underset{\substack{\text { DRIVEWAY } \\ \text { TYPE }}}{ }$	$\underset{\text { width }}{\text { wit }}$ (FT)	$\begin{gathered} \text { LENGTH } \\ \text { LT } \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { L2 } \\ (\text { FT }) \end{gathered}$	$\begin{gathered} \text { Lençth } \\ \text { (FT) } \end{gathered}$	$\begin{gathered} \substack{\text { LENGTH } \\ \text { (FT) }} \end{gathered}$	${ }^{\text {Radidus }}$ $(F T)$	$\underset{\text { R2 }}{\text { Radius }}$ (FT)	$\underset{(\text { ET) }}{\substack{\text { ELEvation }}}$	$\underset{\text { E2 }}{\substack{\text { ELEVATion }}}$	$\underset{\substack{\text { ELEVATion } \\ \text { E3T) }}}{\substack{\text { (FT) }}}$	$\underset{\text { El } 4}{\text { Elevation }}$ (FT)	$\begin{aligned} & \text { SLOPE } \\ & \text { S1 } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SLope } \\ & \text { s2 } \\ & (\%) \end{aligned}$	DR I VEWAY AREA (SY)	$\left\lvert\, \begin{gathered} \text { CoMMERCIAL } \\ \text { ORIVEWAY TCE } \\ \text { (FTXFT) } \end{gathered}\right.$	remarks
1	HaLn_belknap	14*43.12	LT	1	15	9.22	5.00	1.00		15	15	84.71	85.19	85.26	85.28	-5.21	-0.84	44		
2	haLn_belknap	$14+88.56$	LT	2	12	9.28	5.00	1.00	24.32	15	15	85. 17	84.98	84.90	84.44	2.00	4.00	71	18×27	
3	HALN_BELKNAP	$16+12.97$	RT	1	24	21.42	5.00	1.00		25	25	85.36	87.01	87.09	87.10	7.69	-0.95	115		
4	HALN_BELKNAP	$18+36.19$	RT	2	30	20.71	5.00	2.00	3.77	25	25	84.58	86.23	86.31	86.48	7.97	3.00	149	7×37	
	HALN_BELKNAP	20+11.34	RT	1	24	21.94	5.00	1.00		25	25	83.97	84.56	84.63	84.65	2.70	5.56	110		
6	HALN_BELKNAP	20+66.42	${ }_{\text {RT }}$	1	23	22.02	5.00	1.00	-	25	25	83.77	84.71	84.78	84.80	4.27	-0.25	107	-	
7	haln_belknap	$22+52.43$	RT	2	21	22.26	5.00	1.00	4.74	25	25	84.03	83.94	84.02	84.11	-2.0	0.83	119	7×27	
8	HALN_BELKNAP	23+89. 32	RT	1	36	22.44	5.00	1.00	-	25	25	84.51	86.25	86.32	86.34	7.79	2.01	158		
9	HALN_BELKNAP	$27+43.14$	RT	1	21	22.90	5.00	1.00	-	25	25	84.06	85.00	85. 07	85.09	4.07	-0.35	109	-	
10	HALN_BELKNAP	29+26.12	RT	2	33	19.85	5.00	4.29	4.36	25	25	82.87	84.24	84.32	84.44	6.89	-0.95	166	7×39	-
11	HALN_BELKNAP	$33+47.88$	RT	2	36	19.74	5.00	4.95	1.81	20	25	83.87	84.76	84.83	84.92	4.50	2.00	164	4×42	
12	HALN_BELKNAP	$33+78.45$	LT	2	27	24.16	5.00	1.00	10.53	25	25	84.00	85.45	85.52	85.56	-6.0	1.35	165	13×33	-
13	HALN_BELKNAP	34+23.93	RT	2	25	19.84	5.00	4.95	21.34	25	20	83.90	85.09	85.17	86.35	6.00	5.79	178	24×31	
14	HALN_BELKNAP	$36+07.94$	RT	1	25	24.03	5.00	1.00		25	25	84.62	86.36	86. 44	86.45	7.24	-0.19	198		-
15	haLn_belknap	37+33.70	RT	2	21	25.69	5.00	1.00	1.81	25	25	84.71	84.51	84.47	84.55	-2.0	0.87	116	4×27	
16	HALN_BELKNAP	38+83.66	RT	1	35	21.34	5.00	4.05		25	25	84.58	85.54	85.61	85.63	3.91	3.04	162		
17	HALN_BELKNAP	39+65.57	LT	1	12	24.52	5.00	1.00	-	25	25	84.87	85.11	85. 18	85. 20	-0.98	1.15	81	-	-
18	HALN_BELKNAP	40+93. 29	RT	1	35	24.66	5.00	1.00		25	25	85.32	87.06	87.13	87.15	7.06	-0.34	163	-	
19	HALN_BELKNAP	$41+04.55$	LT	1	35	24.69	5.00	1.00		25	25	85.36	87.03	87. 10	87.12	-6.79	-0.87	163		
20	HALN_BELKNAP	$42+16.59$	RT	2	25	24.83	5.00	1.00	0.67	25	25	85.75	84.59	84.51	84.50	-4.67	-2.3	130	3×31	
21	HaLN_BELKNAP	$42+88+18$	LT	1	35	24.93	5.00	1.00		25	25	85.64	87.00	87.08	87.09	-5.45	-2.54	164		
22	HALN_BELKNAP	$44+33.24$	LT	1	20	25.12	5.00	1.00	-	25	15	84.55	85. 08	85. 15	85. 17	-2.1	- 3.23	99		
23	HaLN_BELKNAP	$44+91.74$	LT	1	20	25.20	5.00	1.00	-	15	25	84.11	85.51	85.58	85.60	-5.53	-1.9	100	-	
24	HALN_BELKNAP	$46+05.07$	RT	1	21	25.33	5.00	1.00		25	25	83.96	84.56	84.63	84.65	2.34	- 3.17	115		
25	HALN_BELKNAP	47+93.94	RT	2	24	11.19	5.00	16.84	52.79	25	25	85.21	84.98	84.91	84.38	-2.0	-0.1	271	30×56	
26	haLn_belknap	49-48. 21	LT	2	33	3.09	5.00	2.74	26.56	25	25	83.59	83.53	83.46	84.50	1.50	-6.00	172	30×48	
27	HALN_BELKNAP	$51+30.74$	RT	1	24	45.11	5.00	1.80	-	25	25	83.91	84.50	84.58	84.61	1.32	0.25	180		
28	haLn_belknap	$52+40.04$	LT	${ }^{2}$	26	3.60	5.00	15.18	7.71	25	25	86.50	86.45	86.38	86.71	1.50	-3.04	130	10×32	
29	HALN_BELKNAP	57+32.55	RT	2	11.79	13.09	5	1	23.22	15	15	86.25	86.01	85.92	85.17	-2.0	-4.0	71	18×25	
30	HALN_OAKBENO	9+76.27	LT	1	12	16.87	-	-		3.5	3.5	84.28			84.68	-2.4	-2.4	25		

TYPE 1

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
DRIVEWAY SUMMARY

9"BARRIER CURB

FULL DEPTH CONCRETE PAVEMENT REPAIR

FULL DEPTH CONCRETE PAVEMENT REPAIR (FDCPR) NOTES:

1. ONLY Full depth sawcuts will be allowed
2. EXISTING CONCRETE VERTICAL FACES SHALL BE CLEANED OF AL
DELETERIOUS LOOSE MATERAL PRIOR TO CONCRETE PLACEMENT.
3. For repal /replace areas a in depth base shall be renmved and SPECIFICATONS.
4. REINFORCEMENT OF $9 "-10$ " THICK CONCRETE PAVEMENT SHALL BE NO. 5
BARS AT 18" SPACING IN EACH DIRECTION. REFER TO TABLE ON

SARS AT 18 " SPACING IN EACH DIREC
CONCRETE PAVEMENT SHEET 2 OF 2
5. Refer to fbc street acceptance guidelines

CONCRETE APRON DETAIL - DRIVEWAY PROFILE FOR CULVERT DRAINAGE

BELKNAP ROAD		
		07
$\begin{aligned} & \text { SCALE: } \\ & \text { ASEETED } \\ & \text { ASTE: } \end{aligned}$	OVED BY: SHEET 3 OF 3	SHEET no:

Tfs - fast track concrete paving depth at intersections and leave outs.

PaVIng depth "T" Shown in the plans.
2. AT INTERSECTIONS AND LEAVE-OUT LOCATIONS USE THE SAME LONGITUDNAL AND
 SINGLE MAT). FOR SINGLE MAT FAST TRACK PAVING, PLACE THE LONGITUDINAL AND
TRANSVERSE BARS FOR THE FAST TRACK PAVING AREA AT THE HORIZONTAL PLANE

3. THE REQURED FAST TRACK PAVING AREAS WIL BE SHOWN ON THE PLANS. THE

5. SPLICE LENGTH IS A MINMUM OF 33 times the nominal steel diameter.
6. PLACE THE CONCRETE PLACEMENT AT A UNFORM DEPTH THROUGHOUT THE FAST
7. For Continuous sections of roadway where fast track paving is the primary
PAVEMENT TYPE, USE THE BAR SIZE AND SPACING FROM THE CRCP STANOARDS PAVEMENT TYPE. LSE THE BAR SIIEE AND SPACING FROM THE CRCP STANOARDS
THAT CORRESPONOS TO THE FAST TRACK SLAB THCKNESS.
THA CORRESONDS IO HE FAST TRACK SLAB THCKNESS.
 TRAFFIC.
9. base the depti of saw cuts for sawed joints on the fast track concrete
10. THIS STANDARD IS NOT INTENDED TO REPLACE OTHER STANDARDS EXCEPT WHERE SPECFICALY STATED HEREN FOR PAUING DETALLS NOT SHOWN ON THIS
ORANG REER TO THE SANARD SEETS FOR CNTINOUSLY REINFORCED DRAWNG REFER TO THE STANDRD SHEETS FOR CONTINL
CONCRETE PAVEMENT SHOWN ELSEWHERE IN THE PLANS.
($\begin{aligned} & \text { FAST TRACK } \\ & \text { PAVING AREA }\end{aligned}$

TYPICAL PAVING PLANS

LEGEND

ASB - ASPHALT STABILIZED BASE
CRCP - CONTINOUSLY RENFORCED CONCRETE PAVEMENT
D - DIAMETER
LTS - LIME TREATED SUBGRADE
PCTB - PORTLAND CEMENT TREATED BASE

Texas Department of Transportation Houston District							
FAST TRACK CONTINUOUSLY REINFORCED CONCRETE PAVEMENT DETAILS							
CRCP-FT							
FILE: STDB-4.dgn	on:			\|ow:			
	${ }^{\text {Dist }}$	${ }_{\text {EEO ReG }}$	proses	Oоест			ster
	HOU	U					
		counry	conrrol	$\mathrm{Lsec}^{\text {S }}$	Jo8		

SIDEWALK JOINT DETAILS

CONTRACTION JOINT SEAL

EXPANSION JOINT

NOTES:
TyPICAL SIDEWALK WIDth is 5^{\prime}. Sidewalks of 4^{\prime} width are allowed in front of single family homes if all DRIVEWAYS PROVIDE A 5' AREA FOR PASSING. SIDEWALKS OF 4' WITH 5 ' $\times 5^{\prime}$ PASSING ZONES MUST BE SPECIFICALLY

THE maximum width between expansion joints shall not exceed $20^{\circ}-0^{\circ}$
3. EXPANSIon Joint is to be $1 / 2^{\prime \prime}$ thick clear heart redwood dowels
4. Scored contraction joints shall be every 5' or equal to sidewalk width
5. all earthen areas are to be sodded unless shown otherwise on drawings.
6. SIDEwalks are to be reinforced concrete (3500 PSI) with \#3 bars, 18 inches c-c.
7. use radius tool on all exposed edges.
8. membrane curing compound is required as described in item 526 in the txdot standard
9. sidewalk expansion joints shall conform to street expansion joint standards

SIDEWALK CROSS SECTION

NOTE:
BANK SAND IS DEFINED AS A WELL-GRADED SAND, FREE OF SILT, CLAY, LOAM, FRIABLE OR SOLUBLE MATERIALS AND
ORGANIC MATTER, MEETING THE UNFIED SOILS CLASSIFICATION SYSTEM GROUP SW CRITERIA W/ A PLASTICITY INDEX OF LESS THAN 10 AND NO MORE THAN 12% OF MATERILL CAN PASS THE NO ZOO SEVE

CURB RAMPS

1. Install o curb romp or blended transition ot each pedestrion street crossing.
2. All slopes shown ore moximum ollowoble. Cross slopes of 1.5% and lesser running
should be used. Adjust curb romp length or grode of opprococh sidewwaks os diriected.
3. Maximum ollowoble cross slope on sidewalk and curb ramp surfoces is 2%
4. The minimum sidewalk widt is 5^{5}. Where the side wolk is odiocent to the bock of curb,

5. Turring Spoces shall be $5^{\prime} \times 5^{\prime}$ minimum. Cross slope shall be maximum 2%.
6. Cleer spoce ot the bottom of curb rompss shall be o minimum of $4^{4} \times 4^{4}$ wholly contained
7. Provide flired sides where the pedestrian circulotion poth crosses the curb romp
 the romp, either becouss
or otherwise protected.
8. Additional intormotion on curb romp locotion, design, liont refiective volue ond Pedestrion Focilitien in the Publics Right of Woy (PRRWA) ov oublished by the
U.S. Architectural ond Tronsportotion Boriers Complionce Boord (Access Board).
9. To serve os o pedestrion refuge area, the medion should be o minimum of ${ }^{\prime}$ wide,
mesourued trom oock of curs.
passoge over or through them. Medions should be designed to provide occessible 0. Small chonnelization islonds., which do not provide a minimum $5^{5} \times 5^{5}$ ' Ianding ot the
top of curb romps, sholl be cut through level with the surfoce of the street. 1. Crosswalk dimensions, crosswalk morkings ond stop bar locations shall be os shown elsemhere in the plons. At intersections where croswolk morkings ore not required curb romps sholl olign with theoreticol crosswolks unless otherwise directed.
10. Provide curb ramps to connect the pedestrion access route ot each pedestrion street
crossing.' Hondroils ore not required on curb romps.
11. Curb ramps, and landings shall be constructed and poid for in accordance with litem 53
12. Place concrete ot a a othimum depth of $5^{n \prime}$ for romps, flores ond Iondings, unless
otirected.
13. Furrish and install No. 3 reinforcing steel bors ot $18^{\prime \prime}$ o.c. both woys,
14. Provide a smooth tronsition where the curb ramps connect to the street.
15. Curbs shown on sheet 1 within the limits of payment ore considered port of the curb
romp for poyment, whether it is concrete curb, gutter, or combined curb ond gutter.
16. Exxising features thot comply with opplicalbe standords may remoin in ploce unless
otherwise shown on the plons.
oetectable warning material

17. Detectoble Worring Moterials must meet TXDDT Deportmental Moterials Specification
DMS 4350 ond be. Isted on the Moteriol Procucer List. Instol procucts in occordonce with monutacturer's specifictions.
18. Detectable worning surfoces must be firm, stoble and slip resistont.

19. Shoded oreas on Sheet 1 of 4 indicate the approximote location for the detectable
detectable warning pavers (IF used)
20. Furnish detectoble worring pover units meeting oll requirements of ASTM C-936, C-33.
Loy in otwo by two unit bosket weove pattern or os directed.
21. Loy full size units first followed by closure units consisting of of leost 25 percent
(25\%) of o full unit. cut detectoble worring pover units using 0 opower sow. SIDEWALKS

22. Ploce troffic signol or illumination poles, ground boxes, controller boxes, signs,
droin oege focilites
ord or clear grounc space.
23. Street grodes ond cross slopes sholl be as shown elsewhere in the plons
24. Chonges in level greater than $1 / 4$ inch ore not permitted,
 the paralle roodway. Where o continuous grode greater than five percent (5%) must be
provided, hondroiss moy be desirioble to improve occessibility. Hondroils
 shall comply with PROWAG R409
25. Hondrait extensions shall not protrude into the usoble londing area or into intersecting
26. Drivewys ond turnuts shall be constructed ond paid for in occordonce with 1 tem
27. Sidewalk details ore shown elsewhere in the plons.

CivilTech
Engineering In cypress, Texas 77429

FORT BEND COUNTY, TEXAS

BELKNAP ROAD IMPROVEMENTS
bellfort blvd to oak bend forest d
DRAINAGE AREA MAP
geopak 2013 drainage (storm drain design)
Project Nome: Belkgoe Rood
Project Descor iption: Storm Sewer
Design Frequency: 5 Yeor
Meosurement Unit: Engli ish
County: Fort Bend
Runoff Computations for Design Frequency

ID	${ }_{\text {Runoff }}^{\text {(c) }}$	$\begin{gathered} \text { Drainage } \\ \text { Areo } \\ \text { (ocres) } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Time of } \\ \text { Conc. (min) } \\ \hline \end{array}$	$\begin{gathered} \text { Time } \\ \text { Used } \\ \text { Usin) } \\ \text { (min } \end{gathered}$	${ }_{\substack{\text { Intensiry } \\ \text { (in/h) }}}^{\substack{\text { a }}}$	$\begin{gathered} \text { Dischorgoe } \\ (c f s) \end{gathered}$
A13-1	0.78	0.19	22.46	22.46	4.83	0.70
A13-2	0.86	0.09	21.54	21.54	4.93	0.37
A16-1	0.62	1.32	25.50	25.50	4.52	3.72
A17-1	0.85	0.15	22.16	22.16	4.86	0.60
A17-2	0.77	0.16	22.24	22.24	4.85	0.60
A17-3	0.64	1.37	25.57	25.57	4.51	3.96
A19-1	0.86	0.13	21.98	21.98	4.88	0.55
A19-2	0.80	0.17	22.32	22.32	4.84	0.66
A19-3	0.50	0.61	24.17	24.17	4.65	1.41
A19-4	0.64	0.96	24.93	24.93	4.57	2.78
A21-1	0.86	0.20	${ }^{22.53}$	22.53	4.82	0.82
A21-2	0.80	0.29	23.04	23.04	4.77	1.11
A21-3	0.64	2.26	26.54	26.54	4.42	6.38
A23-1	0.86	0.12	21.88	21.88	4.89	0.51
A23-2	0.81	0.17	22.32	22.32	4.84	0.65
A23-3	0.54	1.21	25.34	25.34	4.53	2.97
A23-4	0.49	0.10	21.67	21.67	4.92	0.23
A24-1	0.89	0.08	21.41	21.41	4.95	0.36
A24-2	0.86	0.04	20.67	20.67	5.04	0.19
A24-3	0.63	2.57	26.81	26.81	4.40	7.17
A26-1	0.88	0.05	20.90	20.90	5.01	0.24
A26-2	0.86	0.03	20.39	20.39	5.07	0.14

Eopak 2013 Droinage (story drain design)
Project Nome: Bel 1 k
Jot Number: 000169
roject Descrint ition: Storm Sewer
Desi
Design Frequency: 5 Year
Meosurement Unit: Engl ish
County: Eart
County: Fort Bend

SYSTEM B						
ID	${ }_{\text {Runoff }}^{\text {(C) }}$	Drainoge Area	$\begin{array}{\|c} \hline \text { Time of } \\ \text { Conc. (min) } \end{array}$	$\begin{gathered} \text { Time } \\ \text { Useo } \\ \text { Usin } \end{gathered}$	$\begin{gathered} \text { Intensity } \\ \text { (in/hr) } \end{gathered}$	Discharge $(c f s)$
B28-1	0.86	0.15	22.16	22.16	4.86	0.64
B28-2	0.81	0.19	22.46	22.46	4.83	0.75
B28-3	0.55	1.96	26.27	26.27	4.45	4.83
B30-1	0.86	0.21	22.66	22.66	4.81	0.89
B30-2	0.82	0.26	22.89	22.89	4.78	1.03
B30-3	0.54	2.63	26.86	26.86	4.40	6.21
B30-4	0.59	5.97	28.70	28.70	4.24	14.80
B32-1	0.86	0.12	21.88	21.88	4.89	0.52
B32-2	0.80	0.14	22.07	22.07	4.87	0.53
835-1	0.85	0.22	22.66	22.66	4.81	0.90
B35-2	0.77	0.27	22.94	22.94	4.78	1.00
B35-3	0.35	0.27	22.94	22.94	4.78	0.45
B35-4	0.35	0.12	21.88	21.88	4.89	0.21
B36-2	0.59	5. 45	28.48	28.48	4.26	13.59
${ }^{838-1}$	0.83	0.28	22.99	22.99	4.77	1.09
B38-2	0.80	0.30	23.09	23.09	4.76	1.15
B38-3	0.60	0.75	24.51	24.51	4.61	2.08
B38-4	0.49	0.63	24.22	24.22	4.64	1.44
$840-1$	0.79	0.13	21.98	21.98	4.88	0.50
B40-2	0.69	0.13	21.98	21.98	4.88	0.43
B40-3	0.35	0.19	22.46	22.46	4.83	0.33
B40-4	0.66	3.46	27.44	27.44	4.34	9.90
$841-1$	0.83	0.05	20.90	20.90	5.01	0.21
B41-2	0.76	0.08	21.41	21.41	4.95	0.32
B41-3	0.35	0.07	${ }^{21.41}$	21.41	4.95	0.13
B41-4	0.70	0.02	20.02	20.02	5. 12	0.08
B43-1	0.79 0.83 0.8	0.12 0.08 0.08	21.88 21.41	$\frac{21.88}{21.41}$	4.89 4.95	0.45 0.31 0.35
${ }^{\text {B43-2 }}$	0.83	0.08	21.41	${ }^{21.41}$	4.95	0.31
${ }^{\text {B433-3 }}$	0.51	0.10	${ }^{21.67}$	21.67	4.92	0.25
B43-4	0.67	2.77	26.97	26.97	4.39	8.18
845-1	0.79	0.28	22.99	22.99	4.77	1.
B45-2	0.82	0.25	22.83	22.83	4.79	0.96

GEOPAK 2013 Droinage (Storm drain design
Project Nome: Be 1 kn
Job Number: 008169
Project Description: storm Sewer
Design Freauency: 5 yeor
County: Fort Uent: Englis
County: Fort Bend
Runoff Computations for Design Frequency

ID	$\underset{\text { Ru) }}{\substack{\text { Runff }}}$	Drainage Area (acres)	$\left[\begin{array}{c}\text { Time of } \\ \text { Conc. (min) }\end{array}\right.$	Time Used (min)	$\underset{\substack{\text { Intensity } \\ \text { in } \\ \text { ar }}}{\text { r }}$	${ }_{\text {Discharge }}^{\substack{\text { cfs) }}}$
C47-1	0.83	0.11	21.78	21.78	4.90	0.46
C47-2	0.85	0.04	20.67	20.67	5.04	0.18
${ }^{\text {C49-1 }}$	0.86	0.17	22.32	22.32	4.84	0.69
C49-2	0.87	0.12	21.88	21.88	4.89	0.52
${ }^{\text {C50-1 }}$	0.79	0.28	22.99	22.99	4.77	1.05
C50-2	0.70	0.30	23.09	23.09	4.76	1.01
${ }^{\text {C50-3 }}$	0.35	0.14	22.07	22.07	4.87	0.23
C50-4	0.56	1.05	25.10	25.10	4.56	2.71
C51-1	0.76	\bigcirc	22.16	22.16	4.86	0.56
C51-2	0.73	0.14	22.07	22.07	4.87	0.49
${ }^{\text {C53-1 }}$	0.87	0.29	23.04	23.04	4.77	1.22
C53-2 C53-3	0.87 0.60	0.30	23.09 24.82	23.09 24.82	4.76 4.58	

cepak 2013 Droinage (STORM DRAIN DESIG)
Project Nome: Be knop Road
Job Number: 008169
project Description: storm Seve
Design Freauency: 5 Year
Meosurement Uni $i:$ Engl i is
County: Fort Bend/Horr is
Runoff Computations for Design Freat

SYSTEM						
ID	$\begin{aligned} & \text { Runoff } \\ & \text { (C) } \end{aligned}$	$\begin{aligned} & \text { Drainoge } \\ & \hline \text { Are } \end{aligned}$	Time of Conc. (min)	Time Used used	$\begin{gathered} \text { Intensity } \\ \text { (inkr) } \end{gathered}$	$\underset{\substack{\text { (cfs) } \\ \text { (ct } \\ \text { D }}}{\text { Dishorge }}$
D55-3	0.51	1.32	25.50	25.50	4.52	3.07
D55-4	0.56	0.48	23.79	23.79	4.69	1.25
058-1	0.78	0.24	22.78	22.78	4.79	0.89
D58-2	0.78	0.28	22.99	22.99	4.77	1.
D58-3	0.62	0.49	23.82	23.82	4.68	
059-1	0.77	0.24	22.78	22.78	4.79	0.88
059-2	0.35	0.08	21.41	21.41	4.95	0.13
060-1	0.75	0.26	22.89	22.89	4.78	0.93

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
RUNOFF COMPUTATIONS
Desion Frequency: 5 Yeor

County: Fort Bend
on Grode Inlet Computation Data
-10

10	Type	Dischorge	Ponded	Ponded	Allow Pond	SYSTEM A	Longi tudinal	Length	Width	Depr.	opocity	By Poss	To Node
${ }^{\text {A } 13-1}$	Curb	10.70	6.46	0.13	8.00	+	$\frac{\text { Sope }}{0.59}$	10.00	n/o		0.70	(cfs)	
A13-2	Curb	0.37	5.09	0.10	8.00	2.00	0.59	10.00	n/o	0.25	0.37	0.00	**
A17-1	Curb	0.60	6.72	0.13	8.00	2.00	0.35	5.00	n/o	0.25	0.60	0.00	A19-1
A17-2	Curb	0.60	6.71	0.13	8.00	2.00	0.35	5.00	n/o	0.25	0.60	0.00	A19-2
A19-1	Curb	0.55	6.49	0.13	8.00	2.00	0.35	5.00	n/a	0.25	0.55	0.00	A21-1
A19-2	Curb	0.66	6.96	0.14	8.00	2.00	0.35	5.00	n/o	0.25	0.66	0.00	A21-2
A23-1	Curb	0.51	6.34	0.13	8.00	2.00	0.35	5.00	n/o	0.25	0.51	0.00	A21-1
A23-2	Curb	0.65	6.93	0.14	8.00	2.00	0.35	5.00	n/o	0.25	0.65	0.00	A21-2
A24-1	Curb	0.36	5.52	0.11	8.00	2.00	0.35	5.00	n/o	0.25	0.36	0.00	${ }^{\text {A2 } 23-1}$
A24-2	Curb	0.19	4.34	0.09	8.00	2.00	0.35	5.00	n/o	0.25	0.19	0.00	A23-2
A26-1	Curb	0.24	4.24	0.08	8.00	2.00	0.65	5.00	n/o	0.25	0.24	0.00	B28-1
A26-2	Curb	0.14	3.45	0.07	8.00	2.00	0.65	5.00	n/o	0.25	0.14	0.00	B28-2

GEOPAK 2013 Drainoge (STORM DRAIN DESIGN
Project Nome: Belknop Rood
Job Number: 008169
: 008169 Con Storm Sewer
Design Frequency: 5 Yeor
Meosurement Unit: Eng 1 ish
County: Fort Bend
on Grode Inlet Computation Dota

10	Type		${ }_{\substack{\text { Ponded } \\ \text { width }}}^{\text {ate }}$	Ponded Depth		$\begin{aligned} & \text { Transverse } \\ & \text { Slope (\%) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Longi tudinal } \\ \text { siope } \% \end{gathered}$		$\underset{\substack{\text { Width } \\(f+)}}{\text { cti }}$	Depr.	${ }_{\substack{\text { Copocity } \\ \text { (cfs) }}}^{\substack{\text { ctict }}}$	${ }_{\text {By Poss }}^{\substack{\text { (cfs) }}}$	To Node
B28-1	Curb	0.64	6.13	0.12	8.00	2.00	0.65	5.00	n/o	0.25	0.63	0.01	B30-1
B28-2	Curb	0.75	6.49	0.13	8.00	2.00	0.65	5.00	n/o	0.25	0.71	0.04	B30-2
B32-1	Curb	0.52	5.94	0.12	8.00	2.00	0.50	5.00	n/o	0.25	0.52	0.00	B30-1
832-2	Curb	0.53	5.98	0.12	8.00	2.00	0.50	5.00	n/o	0.25	0.53	0.00	${ }^{830-2}$
B40-1	Curb	0.50	6. 27	0.13	8.00	2.00	0.35	5.00	n/a	0.25	0.50	0.00	${ }^{\text {B388-1 }}$
B40-2	Curb	0.43	5.95	0.12	8.00	2.00	0.35	5.00	n/a	0.25	0.43	0.00	838-2
B41-1	Curb	0.21	4.54	0.09	8.00	2.00	0.35	5.00	n/o	0.25	0.21	0.00	${ }^{840-1}$
841-2	Curb	0.32	5.29	0.11	8.00	2.00	0.35	5.00	n/o	0.25	0.32	0.00	B40-2
B43-1	Curb	0.45	5.21	0.10	8.00	2.00	0.75	5.00	n/o	0.25	0.45	0.00	B45-1
843-2	Curb	0.31	4.55	0.09	8.00	2.00	0.75	5.00	n/a	0.25	0.31	0.00	B45-2

```
GEOPAK 2013 Droinage (STORM DRAIN DESIO
```

Job Number: 008169
Project Description: storm sewer
Design Frequency: 5 Yeor
Meosurement Unit: Engli
County: Fort Bend
On Grode Inlet Computation Data

10	Type	$\underbrace{\text { cose }}_{\substack{\text { Discharge } \\ \text { (cfs) }}}$	$\underset{\substack{\text { Ponded } \\ \text { width }}}{\text { cin }}$	Ponded	$\underbrace{\text { Width }(f+)}_{\text {Mox Allow Pond }}$	$\begin{aligned} & \text { Tronsverse } \\ & \text { Siope (\%) } \end{aligned}$	Longitudina ${ }_{\text {siope }}$	$\underset{\substack{\text { Length } \\(f+t)}}{\text { ctiol }}$	${ }_{\substack{\text { width } \\(f+)}}^{\text {a }}$	Depr.	${ }_{\substack{\text { Copacity } \\ \text { (cfs) }}}^{\text {cit }}$	${ }_{\text {By Poss }}^{\text {(cfs) }}$	To Node
C47-1	Curb	0.46	5.28	0.11	8.00	2.00	0.75	5.00	n/a	0.25	0.46	0.00	B45-1
C47-2	Curb	0.18	3.70	0.07	8.00	2.00	0.75	5.00	n/o	0.25	0.18	0.00	B45-2
C49-1	Curb	0.69	5.82	0.12	12.00	2.00	1.00	5.00	n/a	0.25	0.64	0.05	C50-1
C49-2	Curb	0.52	5.22	0.10	6.00	2.00	1.00	5.00	n/a	0.25	0.51	0.01	C50-2
C51-1	Curb	0.66	4.82	0.10	12.00	2.00	2.50	5.00	n/a	0.25	0.55	0.11	C50-1
${ }^{\text {C51-2 }}$	Curb	0.60	4.65	0.09	12.00	2.00	2.50	5.00	n/a	0.25	0.52	0.08	${ }_{\text {C50-2 }}$
${ }^{\text {C533-1 }}$	Curb	1.22	9. 26	0.19	12.00	2.00	0.26	5.00		0.25	1.12	0.10	${ }^{\text {C51-1 }}$
C53-2	Curb	1.26	9.36	0.19	12.00	2.00	0.26	5.00	n/a	0.25	1.15	0.11	C51-2

```
GEOPAK 2013 Drainoge (STORM DRAIN DESIGN
Projec+ Nome: Belknop Rood
Proje+ Nome: Bit kn
Project Description: Storm Sewer
Me,
County: Fort Bend/Horr is 
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{SYSTEM D} \\
\hline 10 & Type &  &  & \({ }_{\text {Ponded }}^{\substack{\text { Popth } \\ \text { Depth }}}\) & Max Allow Pond & Transverse
Slope \((\%)\) & Longitudinal
siope \(\%\) & \({ }_{\substack{\text { Lenoth } \\(f+)}}^{\text {ction }}\) &  & Depr. & \({ }_{\text {copacity }}^{\substack{\text { coics) } \\ \text { (cfs }}}\) & \({ }_{\text {By Pass }}^{\text {(cfs) }}\) & Node \\
\hline D58-1 & \({ }_{\text {Curb }}\) & 0.89
1.06 & 7.28
6.76 & 0.15
0.14 & \(\frac{12.00}{12.00}\) & 2.00
2.00 & 0.50
1.06 & 5.00
5.00 & n/o & 0.25
0.25
0. & 0.83
0.85 & 0.06
0.21 & 059-1 \\
\hline 059-1 & & 0.94 & 6.1 & & & & & & 星 & & 0.94 & & \\
\hline
\end{tabular}
```


GEOPAK 2013 Droinoge (STORM DRAIN DESIGN
Project Noter 008169
Job Number
Projet
Project Descr iption: Storm Sewer
Design Freauency: 5 Yeor
Meosurement Unit: Engl i ish
County: Fort Bend
Sog Inilet Computation

10	Type	$\underset{\substack{\text { Dischorge } \\(c f 5)}}{\text { cfi }}$	Dischorge (cfs)		Ponded Width (f)			1000				Depr.	$\underset{\substack{\text { Areo } \\(f+\text {) }}}{\text { c }}$	$\underset{\substack{\text { Per im. } \\(f+)}}{\text { a }}$	$\underset{\substack{\text { Copacitity } \\ \text { (cfs) }}}{\text { ceit }}$	Ponded $\begin{gathered}\text { Pepth } \\ \text { Din }\end{gathered}$	$\begin{gathered} \text { Transverse } \\ \text { Slope } \\ (\%) \end{gathered}$
A16-1	Grote	3.72	1.86	1.86	3.58	3.58	8.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	12.71	0.33	25.00
A17-3	Grote	3.96	1.98	1.98	3.08	3.39	8.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	12.71	0.35	25.00
A19-3	Grote	1.41	0.71	0.71	2.17	2.49	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	15.15	0.17	25.00
A19-4	Grote	2.78	1.39	1.39	2.37	1.93	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	6.89	0.27	25.00
A21-1	Curb	0.82	0.41	0.41	5.83	5.83	8.00	0.35	0.35	5.00	$\mathrm{n} / 0$	0.25	ก/0	n / O	1.13	0.13	2.00
A21-2	Curb	1.11	0.56	0.56	6.53	6.53	8.00	0.35	0.35	5.00	n/a	0.25	n/0	n/a	1.13	0.16	2.00
${ }^{\text {A } 21-3}$	Grote	6.38	3.19	3.19	2.64	4.06	10.00	0.10	0.10	${ }^{\text {2. }} 4.48$	2.48	n/o	4.39	8.42	6.89	0.47	25.00
${ }_{\text {A23-3 }}$	Grote	2.97	1.49	1.49	3.05	3.05	10.00		0.10	2.48	2.48		4.39				25.00
${ }_{\text {A } 23-4}{ }^{\text {a }}$	Grote	0.23	O.12	0.12	0.93 0.95	0.93 4.24	10.00	0.10	0. 10	2.48 2.48	2.48	n/o	4.39 4.39	8.42 8.42	6.89 1.80	0.05	25.00 25.00

GEOPAK 2013 Droinoge (STORM DRAIN DESIGN)
Project Nome: Belkno Roch
Project Nome: Bel kn
Job Number: 008169
Job Number: 008169
Project Descri iption: storm sewer
Desion
Design Frequency: 5 Yeor
Meoasurement Unit: Eng i ish
County: Fort Bend
Sog Inlet Computotion Doto

ID	Type	$\sum_{\substack{\text { Dischorge } \\(c f s)}}^{\text {cfa }}$	Dischorge (cfs)		Ponded Width (ft)			SYSEM B		${ }_{\substack{\text { Lenoth } \\(f+)}}^{\text {ctic }}$	Width	Depr.	$\underset{\substack{\text { Areo } \\ \text { (ft) }}}{\text { a }}$	$\underset{\substack{\text { Per im. } \\(f+\text {) }}}{\text { c }}$	$\underset{\substack{\text { Copacity } \\ \text { (fis) }}}{\text { ct }}$	$\begin{aligned} & \text { Ponded } \\ & \text { Depth } \end{aligned}$	$\begin{array}{\|c} \text { Tronsverse } \\ \text { Slope } \\ (\%) \\ \hline \end{array}$
				Right		Right		Left	Right								
B28-3	Grote	4.83	2.42	2.42	2.92	2.92		0.10	0.10	2.48	2.48	n/o			3.36		
B30-1	Curb	0.90	0.45	0.45	5.38	5.65	8.00	0.50	0.65	5.00	n/a	0.25	$\mathrm{n} / 0$	n/o	1.13	0.14	
B30-2	Curb	1.06	0.53	0.53	5.72	6.01	8.00	0.65	0.50	5.00	n / O	0.25	n/o	n/0	1.13	0.15	2.00
B30-3	Grote	6.21	3.11	3.11	3.41	3.53	10.00	0.10	0.10	2.48	2.48	n/0	4.39	8.42	13.66	0.47	25.00
B30-4	Grote	14.80	7.40	7.40	4.63	4.44	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	9.51	1.57	25.00
B35-1	Curb	0.90	0.45	0.45	5.65	4.47	8.00	1.75	0.50	10.00	n/0	0.25	n/o	n/0	1.87	0.10	2.00
B35-2	Curb	1.00	0.50	0.50	5.86	4.64	8.00	0.50	1.75	10.00	n/a	0.25	n/0	n/o	1.87	0.11	2.00
B35-3	Grate	0.45	0.23	0.23	1.37	1.37	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	14.92	0.08	25.00
B35-4	Grote	0.21	0.11	0.11	1.03	1.03	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	9.06	0.05	25.00
B36-2	Grote	13.59	6.80	6.80	4.90	3.47	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	2.01	1.33	25.00
B38-1	Curb	1.09	0.55	0.55	6.07	6.48	8.00	0.35	0.50	10.00	n/a	0.25	n/0	n/o	1.87	0.11	2.00
B38-2	Curb	1.15	0.58	0.58	6.19	6.62	8.00	0.50	0.35	10.00	n/0	0.25	n/0	n/0	1.87	0.12	2.00
B38-3	Grote	2.08	1.04	1.04	2.67	2.42	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	17.62	0.23	25.00
B38-4	Grote	1.44	0.72	0.72	1.72	1.52	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	6.69	0.18	25.00
B40-3	Grote	0.33	0.17	0.17	1.07	1.07	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	9.87	0.07	25.00
B40-4	Grote	9,90	4.95	4.95	4.53	4.53	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	11.80	0.70	25.00
B41-3	Grote	0.13	0.07	0.07	0.75	0.75	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	6.89	0.04	
B41-4	Grote	0.08	0.04	0.04	0.62	0.62	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	6.89	0.02	25.00
B43-3	Grote	0.25	0.13	0.13	0.96	0.96	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	12.37	0.05	25.00
B45-1	Curb	1.05	0.53	0.53	4.72	4.72	8.00	1.00	0.75	5.00	n/o	0.25	ก/0	n/a	1.24	0.15	2.00
B45-2	Curb	0.96	0.48	0.48	4.58	4.58	8.00	0.75	1.00	5.00	n/a	0.25	n/a	n/a	1.13	0.14	2.00

BELKNAP ROAD IMPROVEMENTS

INLET COMPUTATIONS
geopak 2013 Drainage (storm drain design)
Project Nome: Belknop Rood
Job Number: 008169
Project Description: Storm Sewer
Desi ign Freauency: 5 Yeor
Meosurement Unit:
Measurement Unit.
County: Fort Bend

ID	Type	$\underset{\substack{\text { Dischorge } \\(\mathrm{cfs})^{\prime}}}{\text { a }}$	Dischorge (cfs)		Ponded Width (ft)		$\underbrace{\text { Mox Altow Pond }}$ Width(ft)	Stiome \%		$\underset{\substack{\text { Lenoth } \\(f+1)}}{\text { coin }}$		Depr.	$\underset{\substack{\text { areo } \\(f+)}}{\text { fi }}$	$\underset{\substack{\text { Per im. } \\(f+)}}{\text { f }}$	${ }_{\text {copocity }}^{\text {cfis) }}$	${ }_{\text {Ponded }}^{\substack{\text { Pepth }}}$	$\substack{\text { Tronsverse } \\ \text { s.ope } \\ (\%)}$ $(\% .0)$
			Left	Right	Left	Right		Left	Right								
C50-1	Curb	1.21	0.61	0.61	5.53	4.86	12.00	2.50	1.00	5.00	n/a	0.25	n/0	n/o	2.08	0.17	
C50-2	Curb	1.10	0.55	0.55	5.34	4.69	8.00	1.00	2.50	10.00	n/a	0.25	n/o	n/o	10.33	0.11	2.
C50-3	Grote	0.23	0.12	0.12	0.94	0.94	10.00	0.10	0.10	2.48	2.48	n/0	4.39	8.42	12.26	0.05	25.00
C50-4	Grote	2.71	1.36	1.36	2.35	2.35	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	14.45	0.27	25.00
C53-3	Grote	2.46	1.23	1.23	2.10	2.10	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	16.68	0.25	25.00

GEOPAK 2013 Drainoge (STORM DRAIN DESIGN
Project Nome: Belknoo Rood
Project Nome: Be Iknop Rood
Job Number: 008169
Project Description: Storm Sew
Design Frequency: 5 Yeor
Meosurement Unit: Enal ish
Measurement Unit; Engl is
County: Fort Bend/Horr is
Sog Inlet Computat ion Dote

ID	Type	Dischor	Dischorge (cfs)		Ponded Width (ft)		Mox $\left.\begin{array}{l}\text { Al } 1 \text { Iow Pond } \\ \text { Widt }(f+1)\end{array}\right)$	slope \%		$\underset{\substack{\text { Lenoth } \\(f t)}}{\text { ctic }}$	$\underset{\substack{\text { Widath } \\(f+)}}{\text { ctic }}$	Depr.	$\underset{\substack{\text { Areo } \\ \text { (ft) }}}{\text { c }}$	$\underset{\substack{\text { Per im. } \\(f+\text {) }}}{ }$	$\begin{gathered} \text { Copocity } \\ (\mathrm{cfs}) \end{gathered}$	$\begin{aligned} & \text { Ponded } \\ & \text { Depth } \end{aligned}$	$\begin{gathered} \text { Transverse } \\ \text { slope } \\ \text { (\%) } \\ \hline \end{gathered}$
		(cfs) 3.07	Left	Right	Left	Right		Left	Right								
5-4	Grote	$\frac{3.25}{1.25}$	${ }_{0}$	$\underline{0.63}$	$\stackrel{3.71}{ }$	2.71	10.00	0.10	0.10	$\frac{2.48}{2.48}$	${ }^{2.48}$	n/a	4.39	8.42	11.80	0.16	5.00
8-3	Grote	1.43	0.72	0.72	1.71	1.71	10.00	0.10	0.10	2.48	2.48	n/o	4.39	8.42	16.68	0	
59-2	crote	. 13	07	0.07	. 76	. 95	0.0	0.1		2.48	2. 48			8.4			

Conveyonce Configuration Data

SYSTEM A											
10	${ }_{\text {upstream }}^{\text {ID }}$	${ }_{\substack{\text { downstreom } \\ \text { Io }}}^{\text {dion }}$		Shope	*	Rise	Spon	n	Slope \%	Upstream Invert (ft)	Downstream)
A13-1	A13-1	A-OFF-1	18	Circulor	1	2.00	n/0	0.013	0.10	79.14	79.12
A13-2	A13-2	A-OFF-2	13	circulor	1	2.00	n/o	0.013	0.10	76.50	76.49
A16-1	${ }^{\text {A } 16-1}$	A16-3	34	circulor	1	2.00	n/o	0.013	0.30	77.19	77.03
A16-2	${ }^{116-2}$	A-OFF	22	circulor	1	4.00	n/o	0.013	0.29	74.85	74.78
A17-1	A17-1	A16-2	146	circulor	1	3.00	n/0	0.013	0.27	75.26	74.85
A17-2	A17-2	A17-1	38	circulor	1	2.00	n/o	0.013	2.50	77.33	76.30
A17-3	${ }^{1} 17-3$	A17-2	14	circulor	1	2.00	n/o	0.013	2.50	77.72	77.33
A19-1	A19-1	A17-1	211	circulor	1	3.00	n/0	0.013	0.28	75.86	75.26
A19-2	A19-2	A19-1	38	circulor	1	2.00	n/0	0.013	0.30	76.98	76.86
A19-3	A19-3	A19-1	15	circulor	1	2.00	n/o	0.013	3.50	77.44	76.86
A19-4	A19-4	A19-2	17	Circulor	1	2.00	n/0	0.013	0.30	77.04	76.98
${ }_{\text {A } 21-1}$	${ }_{\text {A } 21-1}$	A19-1	164	Circulor	1	2.50	n/o	0.013	0.27	76.81	76.36
A21-2	A21-2	${ }^{\text {A21-1 }}$	38	circulor	1	2.00	n/o	0.013	0.10	77.35	77.31
A21-3	${ }^{\text {A21-3 }}$	A21-2	16	Circulor	1	2.00	n/o	0.013	0.10	77.37	77.35
A23-1	${ }_{\text {A } 23-1}$	A21-1	163	circulor	1	2.00	$\mathrm{n} / 0$	0.013	0.27	77.77	77.31
A23-2	${ }^{\text {A23-2 }}$	${ }^{\text {A23-1 }}$	38	circulor	1	2.00	n/o	0.013	0.10	77.81	77.77
A23-3	${ }^{\text {A23-3 }}$	A23-1	15	Circulor	1	2.00	n/o	0.013	0.10	77.78	77.77
A23-4	A23-4	A23-2	20	Circulor	1	2.00	n/o	0.013	0.10	77.83	77.81
A24-1	A24-1	A23-1	200	Circulor	1	2.00	n/o	0.013	0.27	78.33	77.77
A24-2	${ }^{\text {A24-2 }}$	${ }^{\text {A 2 4-1 }}$	38	Circulor	1	2.00	n/0	0.013	0.10	${ }^{78.37}$	${ }^{78.33}$
A24-3	${ }^{\text {A24-3 }}$	A24-2	17	circulor	1	2.00	n/o	0.013	0.10	78.39	78.37
A26-1	${ }^{\text {A26-1 }}$	${ }^{\text {A 2 4-1 }}$	121	circulor	1	2.00	n/0	0.013	0.27	78.67	78.33
A26-2	A26-2	${ }^{\text {A26-1 }}$	38	circulor	1	2.00	n/o	0.013	1.30	79.20	78.6

GEOPAK 2013 Droinoge (STORM DRAIN DESIGN)
Project Nome: Belknoo Roocd
Job Number: 008169

Meosurement Unit: English
County: Fort Bend
County: Fort Bend
Conveyonce Configuration Data

SYSTEM B											
ID	${ }_{\text {Upstream }}^{\text {ID }}$		$\underset{\substack{\text { Leng+h } \\(f t)}}{\text { ctict }}$	Shope	\#	Rise	${ }_{\substack{\text { Span } \\(f+)}}^{\text {fr }}$	n	Slope \%	Upstream inver	Downstreom) Invert (ft)
B28-1	B28-1	B30-1	145	circulor	1	2.00	n/0	0.013	0.13	77.52	77.32
B28-2	B28-2	${ }^{\text {B28-1 }}$	38	Circulor	1	2.00	n/o	0.013	0.10	77.56	77.52
B28-3	B28-3	B28-2	18	circulor	1	2.00	n/0	0.013	0.10	77.58	77.56
B30-1	B30-1	832-1	206	circulor	1	3.50	n/o	0.013	0.13	76.61	76.34
	B30-2	${ }_{830-1}$	38	circulor	1	2.00	n/a	0.013	0.50	77.31	77.11
B30-3	B30-3	B30-1	15	circulor	1	2.00	n/0	0.013	0.30	77.16	77.11
B30-4	B30-4	B30-2	15	circulor	1	2.00	n/o	0.013	0.50	77.40	77.31
B32-1	B32-1	835-1	263	circulor	1	3.50	n/0	0.013	0.13	76.34	75.99
B32-2	B32-2	B32-1	38	circulor	1	2.00	n/o	0.013	1.00	78.25	77.84
835-1	B35-1	B36-3	178	circulor	1	3.50	n/0	0.013	0.13	75.99	75.75
B35-2	B35-2	835-1	38	circular	1	2.00	n/o	0.013	1.50	78.11	77.49
B35-3	B35-3	B35-1	16	circulor	1	2.00	n/o	0.013	1.50	77.77	77.49
B35-4	B35-4	B35-2	17	circulor	1	2.00	n/0	0.013	1.50	78.39	78.11
B36-2	B36-2	B36-3	60	circulor	1	2.00	n/o	0.013	0.40	78.00	77.75
B36-3	${ }^{\text {B36-3 }}$	B38-1	123	circulor	1	4.00	n/o	0.013	0.13	${ }^{75.75}$	75.59
B38-1	B38-1	B40-1	210	circulor	1	4.00	n/o	0.013	0.13	75.59	75.31
B38-2	B38-2	B38-1	38	circulor	1	2.00	n/0	0.013	0.10	77.45	77.41
B38-3	B38-3	B38-1	18	circulor	1	2.00	$\mathrm{n} / 0$	0.013	0.14	77.62	77.59
B38-4	B38-4	B38-2	19	circulor	1	2.00	n/o	0.013	0.11	77.47	77.45
${ }_{840-1}$	B40-1	$841-1$	136	circulor	1	4.50	n/o	0.013	0.13	${ }^{75.31}$	75. 12
B40-2	B40-2	B40-1	38	circulor	1	2.00	n/o	0.013	0.30	77.34	77.22
B40-3	B40-3	B40-1	17	circulor	1	2.00	n/o	0.013	1.50	78.12	77.83
B40-4	B40-4	B40-2	19	Circulor	1	2.00	n/0	0.013	0.30	77.41	77.34
B41-1	B41-1	B43-1	190	circulor	1	4.50	n/o	0.013	0.13	75.12	74.88
B41-2	B41-2	B41-1	38	Circulor	1	2.00	n/0	0.013	1.20	78.12	77.62
B41-3	B41-3	B41-1	17	circulor	1	2.00	$\mathrm{n} / 0$	0.013	2.50	78.10	77.62
B41-4	B41-4	B41-2	20	circulor	1	2.00	n/o	0.013	1.20	78.38	78.12
${ }^{843-1}$	B43-1	B45-1	190	circulor	1	4.50	n/0	0.013	0.13	74.88	74.62
B43-2	B43-2	B43-1	38	circulor	1	2.00	n/o	0.013	0.50	76.87	76.67
B43-3	B43-3	B43-1	17	circulor	1	2.00	n/o	0.013	2.50	77.87	77.40
B43-4	B43-4	B43-2	18	circulor	1	2.00	n/o	0.013	4.97	${ }^{81.01}$	80.06
B45-1	B45-1	B-OFF	94	circulor	1	4.50	n/o	0.013	0.12	74.62	74.50

Geopak 2013 drainoge (Storm drain design)
Project Nome: Be lknop Rood
Job Number: 008169
Project Description: Storm Sewer
Meosurement Unit: Engl ish
Measurement Bnd
County: Fort Bend
Conveyen

SYSTEM C											
${ }^{10}$	$\underset{\substack{\text { Upstream } \\ \text { ID }}}{\text { dil }}$	${ }_{\substack{\text { downstreom } \\ \text { ID }}}^{\substack{\text { di }}}$	$\underset{\substack{\text { Lenoth } \\(f+)}}{ }$	Shope	\#	Rise	${ }_{\substack{\text { Spon } \\ \text { (ft) }}}^{\text {c }}$	n	slope \%	Upstream Invert nver	(emnstream)
C47-1	C47-1	C48-1	88	Circulor	1	2.00	n/o	0.013	0.50	79.22	78.76
C47-2	C47-2	C47-1	38	${ }^{\text {circulor }}$	1	2.00	n/o	0.013	0.50	79.43	79.22
C48-1	C48-1	C-OFF	21	circulor	1	2.00	n/o	0.013	0.51	${ }^{75.28}$	75.17
C49-1	C49-1	C48-1	97	Circular	1	2.00	n/o	0.013	0.51	75.80	75.28
C49-2	C49-2	C49-1	50	circulor	1	2.00	n/o	0.013	0.50	78.81	78.55
C50-1	C50-1	C49-1	131	Circulor	1	2.00	n/o	0.013	0.50	${ }^{76.48}$	75.80
C50-2	C50-2	C50-1	57	Circular	1	2.00	n/o	0.013	0.50	76.78	76.48
C50-3	C50-3	C50-1	18	circulor	1	2.00	n/o	0.013	0.10	76.50	76. 48
C50-4	C50-4	C50-2	34	Circulor	1	2.00	n/o	0.013	0.48	76.95	76.78
C51-1	C51-1	C50-1	146	circular	1	2.00	n/o	0.013	0.50	77.24	76. 48
C51-2	C51-2	C51-1	70	circulor	1	2.00	n/o	0.013	0.50	77.86	77.50
C53-1	C53-1	C51-1	133	Circular	1	2.00	n/o	0.013	0.50	77.93	77.24
C53-2	C53-2	C53-1	74	circular	1	2.00	n/o	0.013	0.50	82.00	81.62

GEOPAK 2013 Drainage (STORM DRAIN DESIGN)
Project Nome: Be lknop Roa
Job Number:
Job Number: 008169
Project Descriptio
Meosurement Unit: Engl ish
Conveyonce Configuration Dota
Cont

ID	$\underset{\text { ID }}{\text { Upstream }}$	${ }_{\text {Downstreom }}^{10}$		Shope	"	Rise $(f+)$ (t)	$\underset{\substack{\text { Spon } \\ \text { (ft) }}}{\substack{\text { a }}}$	n	slope \%	Upstream Invert 体	Downstreom
D55-3A	D55-3A	055-3-0FF	64	Circular	1	2.00	n/o	0.013	2.34	74.50	73.00
055-38	D55-38	D55-3A	75	Circulor	1	2.00	n/o	0.013	4.33	77.75	74.50
D55-4A	D55-4A	D55-4-OFF	79	circulor	1	2.00	n/o	0.013	1.90	74.50	73.00
D55-4B	055-4B	D55-4A	52	circular	1	2.00	n/o	0.013	6.73	78.00	74.50
058-1	058-1	059-2	121	circulor	1	2.00	n/o	0.013	0.93	79.59	78.43
058-2	058-2	058-3	49	circulor	1	2.00	n/o	0.013	1.10	78.83	78.25
058-3	058-3	D59-3	103	Circulor	1	2.00	n/o	0.013	0.57	78.25	77.65
-559-1	D59-1	D-OFF-3	67	circulor	1	2.00	n/o	0.013	0.37	77.45	77. 20
059-2	059-2	D59-1	27	Circulor	1	2.00	n/o	0.013	3. 29	78.43	77.45
059-3	059-3	D-OFF-3	12	circulor	1	2.00	n/o	0.013	1.16	77.65	77. 49
060-1	060-1	D59-3	25	circular	1	2.00	n/o	0.013	3.28	78.59	77.65

SYSTEM A CMen												
									${ }_{\substack{\text { Velocity } \\(f+/ s)}}^{\text {ctic }}$	$\underset{\substack{\text { Depath } \\(f+)}}{\text { a }}$	$\underset{\substack{\text { velocity } \\(f+s)}}{\text { city }}$	(eeth
A13-1	${ }^{\text {A } 13-1}$	A-OFF-1	79.55	79.41	0.70	7.70	0.10	0.05	1.44	0.43	2.53	0.29
A13-2	A13-2	A-OFF-2	76.80	76.70	0.37	7.70	0.10	0.03	1.21	0.31	2.01	0.22
${ }^{\text {A } 16-1}$	${ }^{\text {A } 16-1}$	${ }^{\text {A } 16-3}$	78.13	77.70	3.72	13.33	0.30	0.19	3.47	0.75	3.98	0.68
A16-2	A16-2	A-OFF	${ }^{76.88}$	76.35	28.26	83.71	0.29	0.38	5.68	1.67	6.15	1.57
${ }^{\text {A 1 7 } 71}$	${ }^{\text {A } 17-1}$	${ }^{\text {A } 16-2}$	77.50	76.88	28.50	37.41	0.27	0.18	5.48	2.07	5.61	2.03
A17-2	A17-2	${ }^{\text {A 17-1 }}$	78.09	76.79	4.51	38.48	2.50	0.02	7.79	0.48	7.45	0.49
A17-3	${ }_{\text {A } 17-3}$	${ }_{\text {A } 17-2}$	78.68	77.82	3.96	38.48	$\stackrel{\text { 2.50 }}{ }$	0.26	7.50	0.45	6.49	0.50
A19-1	A19-1	${ }^{\text {A } 17-1}$	77.91	77.50	24.15	37.70	0.28	0.10	5.29	1.85	4.27	2.24
A19-2	A19-2	A19-1	77.94	77.91	3. 40	${ }^{13.33}$	0.30 3	0.01	3.35	0.72	2.02 5 5.82	1.05
A19-3	A19-3	A19-1	78.00	77. 12	1.41	45.53	3.50	0.14	6.22	0.25	5.82	0.26
A19-4	A19-4	A 19-2	78.01	77.94	2.78	13.33	0.30	0.06	3.18	0.65	1.87	0.96
A21-1	${ }_{\text {A21-1 }}$	A19-1	78.88	77.91	19.50	22.93	0.27	0.25	4.85	1.91	6.06	1.56
A21-2	A21-2	${ }_{\text {A } 21-1}$	78.93	78.88	7.40	7.70	0.10	0.01	2.42	1.88	2.80	1.57
A21-3	A21-3	A21-2	79.04	78.93	6.38	7.70	0.10	0.09	2.48	1.53	2.39	1.58
${ }^{\text {A } 23-1}$	${ }^{\text {A23-1 }}$	${ }_{\text {A22-1 }}$	79.58	78.88	11.82	$\frac{12.72}{1.72}$	0.27	0.21	4.28	1.64	4.48	1.57
A23-2	A23-2	${ }^{\text {A23-1 }}$	79.58	79.58	0.88	7.70	0.10	0.00	1.56	0.47	0.29	1.81
A23-3	${ }_{\text {A23-3 }}$	${ }^{\text {A23-1 }}$	79.60	79.58	2.97	7.70	0.10	0.02	2.23	0.88	0.99	1.81
A23-4	A23-4	A23-2	79.58	79.58	0.23	7.70	0.10	0.00	1.02	0.25	0.08	1.77
A24-1	${ }^{\text {A } 24-1}$	A23-1	79.91	79.58	7.91	12.73	0.27	0.12	4.01	1.20	2.64	1.81
A24-2	${ }^{\text {A } 24-2}$	${ }^{\text {A } 24-1}$	79.96	79.91	7.31	7.70	0.10	0.00	2.39	1.88	2.74	1.58
A24-3	${ }^{\text {A } 24-3}$	A24-2	80.09	79.96	7.17	7.70	0.10	0.11	2.60	1.64	2.68	1.59
${ }^{\text {A } 26-1}$	${ }_{\text {A } 26-1}$	${ }_{\text {A } 24-1}$	79.91	79.91	0.38	12.72	$\frac{0.27}{1.30}$	0.00	1.70	0.25	0.14	1.58

GEOPAK 2013 Droinage (STORM DRAIN DESIGN
Project Nome: Be lknop Road
Project Nome: Be lkn
Joo Number: 008169
Pro ject Descri iption: storm Sewer
Design
Design Frequency: 5 Yeor
Meoosurement Unit: English
County: Fort Bend
Conveyonce Hydroul ic computations

SYSTEM B												
ID	Usstream	Downstreom	(tastream	Downstreom	Discharge	$\begin{gathered} \text { Capocitity } \\ (\mathrm{Cfs}) \end{gathered}$	Slope \%	-oss (ft)	Uelocity	Dep+h	Velocity	Depth
${ }^{\text {B28-1 }}$	B28-1	${ }_{\text {B30-1 }}$	79.77	79.62	6.06	8.89	0.13	0.04	2.82	1.29	1.93	2.00
B28-2	${ }^{828-2}$	${ }^{828-1}$	79.80	79.77	5.50	7.70	0.10	0.00	2.57	1.29	1.75	$\stackrel{2.00}{ }$
B28-3	B28-3	B28-2	79.84	79.80	4.83	7.70	0.10	0.04	2.52	1.17	1.54	2.00
B30-1	${ }^{\text {B30-1 }}$	${ }^{\text {B32-1 }}$	79.62	79.39	28.22	38.56	0.13	0.09	4.09	2.36	3.17	3.05
B30-2	B30-2	B30-1	79.82	79.62	15.70	17.21	0.50	0.00	5. 78	1.61	5.00	2.00
B30-3	B30-3	${ }^{\text {B30-1 }}$	79.70	79.62	6.21	13.33	0.30	0.06	3.97	1.00	1.98	2.00
B30-4	B30-4	830-2	80.24	79.82	14.80	17.21	0.50	0.35	5.76	1.53	4.71	2.00
B32-1	${ }_{\text {B32-1 }}$	${ }_{\text {B35-1 }}$	79.39	79.21	28.66	39.13	0.13	0.01	4.15	2.36	3.10	3.22
B32-2	832-2	${ }^{832-1}$	79.40	79.39	0.53	24.34	1.00	0.00	2.97	0.21	0.20	1.55
835-1	B35-1	B36-3	79.21	79.04	30.28	39.26	0.13	0.03	4.18	2.46	3.22	3.29
B35-2	B35-2	835-1	79. 21	79. 21	1.20	29.80	1.50	0.00	4.40	0.28	0.42	1.72
B35-3	B35-3	B35-1	79.21	79.21	0.45	29.80	1.50	0.00	3.29	0.18	0.16	1.72
B35-4	B35-4	B35-2	79.21	79.21	0.21	29.80	1.50	0.00	2.61	0.12	0.12	1.10
B36-2	836-2	${ }^{\text {B36-3 }}$	80.09	79.08	13.59	15.35	0.40	0.44	5.18	1.55	6.14	1.33
B36-3	B36-3	B38-1	79.04	${ }^{78.83}$	42.74	54.87	0.13	0.10	4.52	2.82	3.91	3.24
838-1	B38-1	B40-1	78.83	78.52	47.31	56.10	0.13	0.08	4.60	3.05	4.38	3.21
B38-2	B38-2	838-1	78.85	78.83	2.56	7.70	0.10	0.00	2.10	0.82	1.06	1.43
B38-3	B38-3	${ }^{\text {B38-1 }}$	78.85	78.83	2.08	9.10	0.14	0.02	2.23	0.67	1.01	1.24
B38-4	B38-4	B38-2	78.85	78.85	1.44	8.07	0.11	0.01	1.88	0.59	0.62	1.40
B40-1	B40-1	B41-1	78.52	78.26	56.68	76.23	0.13	0.09	4.96	3.04	4.79	3.14
B40-2	B40-2	B40-1	78.69	78.52	10.27	13.33	0.30	0.01	4.45	1.38	4.75	1.30
B40-3	B40-3	B40-1	78.52	78.52	0.33	29.80	1.50	0.01	2.98	0.15	0.34	0.69
B40-4	B40-4	B40-2	79.10	78.69	9.90	13.33	0.30	0.30	4.39	1.35	4.39	1.35
B41-1	${ }^{841-1}$	B43-1	78.26	${ }^{78.03}$	56.80	75.71	0.13	0.00	4.98	3.04	4.76	3.16
B41-2	B41-2	B41-1	78.35	77.80	0.39	26.66	1.20	0.02	2.91	0.18	2.90	0.18
B41-3	B41-3	B41-1	78.30	78.26	0.13	38.48	2.50	0.02	2.68	0.09	0.15	0.64
B41-4	B41-4	B41-2	78.57	78.20	0.08	26.66	1.20	0.01	1.77	0.08	1.77	0.08
B43-1	B43-1	B45-1	78.03	77.45	64.18	76.81	0.13	0.15	4.93	3.43	6.10	2.83
B43-2	B43-2	B43-1	78.06	78.03	8.45	17.21	0.50	0.01	5.15	1.03	3.69	1.37
B43-3	843-3	B43-1	78.11	77.51	0.25	38.48	2.50	0.04	3.27	0.12	3.26	0.12
B43-4	843-4	B43-2	82.52	80.70	8.18	54.26	4.97	0.40	11.81	0.54	9.44	0.64
B45-1	B45-1	B-OFF	77.45	${ }^{76.85}$	65.09	74.64	0.12	0.03	5.00	3.43	7.75	2.35
B45-2	B45-2	845-1	77.79	77.45	0.96	17.21	0.50	0.12	2.80	0.33	2.80	0.33

FORT BEND COUNTY, TEXAS					
BELKNAP ROAD IMPROVEMENTS w BELLFORT BLVD TO OAK BEND FOREST DR STORM SEWER COMPUTATIONS					
CNTY Prou *	pes prou ${ }^{\text {P }}$	date	Scale	SHEET NO	
\|l	$17-2-11$	${ }^{008169}$	${ }^{\mathrm{x} \times \times 2022}$		156
	${ }_{\text {DravN BY }}^{\text {DA }}$	$\frac{\text { CHECKED BY }}{\text { CW }}$	$\frac{\text { verfele br }}{\text { PB }}$		

Project Nome: Belknop Rood
Job Number: 008169 Stor
Design Frequency: 5 Yeor
Meosurement Unit: English
County: Fort Bend

SYSTEM C												
ID	${ }_{\substack{\text { Usstream } \\ \text { ID }}}^{\substack{\text { U }}}$	${ }_{\substack{\text { downtreom } \\ 10}}^{\text {did }}$	${ }_{\substack{\text { Upstreom } \\ \text { HGL (ft) }}}^{\substack{\text { a }}}$	Downstreom	$\begin{gathered} \text { Discharge } \\ (\mathrm{cfs}) \end{gathered}$	$\underbrace{}_{\substack{\text { Copocitity } \\(\mathrm{cfs} \text {) }}}$	Slope \%	Loss	Unif	Depth	${ }_{\text {Act }}$	Depth
C47-1		C481-1										(ift)
		C48	79.58	79.03	0.64	17.21	0.50	0.09	2. 49	0.27	2. 49	0.27
$\xrightarrow{\text { C47-2 }}$	C47-2	${ }_{\text {C47-1 }}^{\text {C-OFF }}$	79.64 76.93 7.9	79.58	0.18	17.21 17.32	0.50	0.03	1.70 5.62	0.15 1.29	0. 46 5.85 8.	0.36 1.25
C48-1	C48-1	C - 0 FF	${ }^{76.93}$	${ }^{76.42}$	12.04 1.54	${ }^{17732}$	0.51	0.36	5.62	1.29	5.85	1.25
C49-1	C49-1	C48-1	77.23	76.93	11.54	17.38	0.51	0.12	5.60	1.25	4.16	1.65
C50-1	C ${ }_{\text {c }}$	${ }_{\text {C49-1 }}$	79.14 78.04	${ }^{787.23}$	11.52 10.53	17.25	0.50 0.50	0.087 0.37	${ }^{2.351}$	1.25 1.19	${ }^{2.38}$	$\xrightarrow{1.43}$
C50-2	C50-2	C50-1	78.07	78.04	3.66	17.21	0.50	0.02	4.11	0.65	1.39	1.56
C50-3	C50-3	C50-1	78.04	78.04	0.23	7.70	0.10	0.00	1.03	0.25	0.09	1.56
C50-4	C50-4	C50-2	78.11	78.07	2.71	16.85	0.47	0.04	3.72	0.57	1.26	1.29
C51-1	C51-1	C50-1	78.37	77.31	5.77	17.28	0.50	0.28	4.69	0.83	4.69	0.83
C51-2	C51-2	C51-1	78.53	78.08	2.91	17.21	0.50	0.07	3.85	0.58	3.85	0.58
C53-1	C53-1	C51-1	78.65	77.76	2.45	17.27	0.50	0.18	3.70	0.53	3.70	0.53
C53-2	${ }_{\text {C53-2 }}$	${ }_{\text {C53-1 }}$	82.52	82.00	1.26	17.21	0.50	0.13	3.05	0.38	3.05	0.38
C53-3	C53-3											

GEOPAK 2013 Droinage (STORM DRAIN DESIGN
Project Nome: Be Ikn
Job Number: 008169
Project Descripty ion: storm Sewer
Desion Freauency: 5 Yeor
Design Freauency: 5 Yeor
Meosurement Unit: Eng i ish
COunty
conveyonce Hyoroul ic Computations

Uniform Actuol												
ID	${ }_{\text {Upstream }}^{\text {ID }}$	${ }^{\text {Downstream }}$	(Dischorge (cfs)		Slope \%	Loss (ft)		$\xrightarrow[\substack{\text { Depth } \\(f+)}]{\text { cti }}$	$\underset{\substack{\text { velocity } \\(f+/ s)}}{\text { cois }}$	${ }_{\substack{\text { Depth } \\(f+)}}^{\text {ctict }}$
D55-3A	055-3A	055-3-0FF	75.27	73.41	3.07	36.99	2.34	0.16	6.78	0.40	6.71	0.41
	D55-38	D55-3A	78.58	74.85		49.97		0.22	8.37	0.35	8.34	0.35
D55-4A	D55-4A	D55-4-OFF	74.98	73.28	1.25	33.36	1.90	0.10	4.84	0.27	4.82	0.28
055-48	D55-48	D55-4A	78.52	74.70	1.25	${ }^{62.17}$	6,73	0.14	7.47	0.20	7.46	0.20
058-1	058-1	059-2	${ }^{80.03}$	78.71	0.89	23.50	0.93	0.11	3.41	0.28	3.41	0.28
D58-2	058-2	058-3	79.31	78.54	1.06	25.54	1.10	0.12	3.82	0.29	3.80	0.29
058-3	058-3	059-3	78.98	78.16	2.47	18.32	0.57	0.18	3.88	0.51	3.88	0.51
059-1	059-1	D-OFF-3	78.07	77.67	1.87	14.79	0.37	0.12	3.05	0.50	3.28	0.47
059-2	059-2	D59-1	78.87	77.67	1.00	44.13	3.29	0.09	5. 49	0.22	5. 44	0.22
-55-3	059-3	D-0FF-3	78.49	78.02	3.35	26.19	1.16	0.20	5.42	0.50	5.04	0.53
060-1	060-1	D59-3	79.04	77.86	0.93	44.09	3.28	0.11	5.37	0.21	5.30	0.21

SECTION B-B

SECTION A-A INLET

COVER SECTION A-A

FRAME SECTION A-A

SECTION C-C

INLET NOTES:
TYPP "C": INLET ONLY - NO EXTENSION
TYPE "C: 1 :
NNLET WTH

No.	REVISIONS	DATE	NAME	ENGINEERING DEPARTMENT
A	ORIGINAL STANDARD ISSUED	2-1-22	RJS	
\triangle				
\triangle				
\triangle				

Civiltech
 Engineering, Inc.

 Ph:

GENERAL NOTES:

1. Construction and Materals shall meet requirments
 3. PRECAST STRUCTURE TO MEET ASTM C913.
2. FRRME AN OVER SHALEE EAT EORAN RON WORS
MOOEL $V-1814$ FRAME AND $V-1418$ COVER OR APPROVED

 8. SECTION OF INLET. 5^{-1}. MS MNUM OR AS SPCIFIED BY THE ENGINEER O 8. 5-6 REORD.

PROUECT TTLE	BELKNAP ROAD	
ORAWN BY: INT: NT:		
	SHEET DESCRPTION: "C", "C-1", "C-2"	27
	AND "C-2A" InLET DETAILS	
DAIE: ${ }_{\text {de }}$	APRROVED BY:	158

	$\begin{gathered} \text { INSIIE. } \\ \substack{\text { IIA. } \\ A .} \\ \hline \end{gathered}$	$\begin{gathered} \text { WALL } \\ \text { THICKNESS } \\ B^{\prime} \text { ' } \end{gathered}$	$\begin{gathered} \text { BASE } \\ \text { THICKNESS } \\ \hline \text { C' } \end{gathered}$	$\begin{gathered} \text { BASE } \\ \substack{\text { STEEL } \\ D_{1}^{\prime}} \end{gathered}$
$30^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$6^{\prime \prime}$	$8{ }^{\prime \prime}$	\#5 © 8"
$42^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$7{ }^{\prime \prime}$	$8{ }^{\prime \prime}$	\#5 @ 8"
$54^{\prime \prime}$	$7^{\prime \prime}=0^{\prime \prime}$	$8{ }^{\prime \prime}$	$10^{\prime \prime}$	\#6 © 12" (2 LAYERS)
$60^{\prime \prime}$	$8^{\prime}-0^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	\#6 © 12" (2 LAYERS)

FRAME SECTION A-A

48" \varnothing PRECAST CONCENTRIC MANHOLE $\frac{\text { FOR PIPE SIZES } 24^{\prime \prime} \text { OR SMALLER }}{\text { SCALE: } 1^{\prime \prime}=1^{\prime}-6^{\prime \prime}}$

GENERAL NOTES:

1. CONSTRUCTION AND MATERALS SHALL MEET REQUIREMENTS

No.	REVISIONS	DATE	NAME
A	ORIGINAL STANDARD ISSUED	2-1-22	R.S
\triangle			

BELKNAP ROAD		
$\begin{aligned} & \text { ORAWN BY: } \\ & \text { Nivi } \end{aligned}$		${ }_{\text {Stagen }}^{\text {Standaro }}$
		20
Stictict	manhole detalls	
2-1-2	Proveo	159

(1) Matches inside face of wall of precast base or riser below inlet.

DETAIL "A"

PLAN VIEW
showing left and right extensions

LID SECTION A-A

LID SECTION B-B
\#4 AS SHOWN
DIA. $+4^{\prime \prime}$ DIA.
$-A$

LID PLAN VIEW
(Showing Left and right extensions)

ABRICATION NOTES

Provide Class "H" concrete in accordance with tem 421 and having a minimuld

7. Chamier verical edges of inlet II

INSTALLATION NOTES:

1. Inlet throat and lid are not intended for direct trafic. Do not place in roadway

2. Dephn, not hrout rover isber gaseag

GENERAL NOTES:

1. Designed according to ASTM C913.

throat elevation view
(Showing left and right extensions)

THROAT PLAN VIEW
(Showing left and right extensions)

$$
\begin{aligned}
& \text { Cover dimensions are clear dimensions, unless noted } \\
& \text { otherwise. }
\end{aligned}
$$

SIZE(Y)	N	MH DIA*	Ra
3^{\prime}	$9^{\prime \prime}$	$18^{\prime \prime}$	(4) \#5 Additional
4^{\prime}	$16^{\prime \prime}$	$32^{\prime \prime}$	(4) \#5 Additional
5^{\prime}	$16^{\prime \prime}$	$32^{\prime \prime}$	(4) \#5 Additional
6^{\prime}	$16^{\prime \prime}$	$32^{\prime \prime}$	(4) \#5 Additional

No.	REVSIIONS	DATE	NAME	
\triangle	ORIIINAL Standard issued	2-1-22	RUS	ORT RFN
\triangle				
\triangle				ENGINEERING DEPARTMENT
\triangle				

HS20 LOADING		SHEE
PROECT TIT	E: BELKNAP ROAD	
ORAWN BY:		${ }_{\text {Standen }}^{\text {Stapo }}$
CK0 Br:	SHEET DESCRIPITION: PRECAST CURB	
SCALE:	INLET OUTSIDE ROADWAY	
IE:	Rove ${ }^{\text {bry }}$	164

** Unless otherwise indicated.
ABRICATION NOTES
2. Maximum spacing of reinforcement is 8 .

At manufacturer's option, provide cast or cored holes or thin wall panels (KO) to the
max imum
GENERAL NOTES:
grade slab. See sheeet PJB for details.
Precast Base consists
Pf
required), and reduced risers (las required). See sheet PB for details.

hl93 loading

PHASE 1 NOTES:

1. Existing brige to reman in pace and undisturbed
2. ONCE BRIDGE \# 1 S COMPLETE IT WILL BE USED FOR 2 -WA CITION AND CONSTRUCTION
bribeetr.
3. REF. To TRAFFIC CONTROL PLANS FOR MORE DETALLS AND

PHASE 2 NOTES

. begin 2-WAY TRAFFIC on completed brdige \#
2. DEMOLISH EXISTING BRIIGE WITHOUT DISTURBING BRIDGE \#

RETURN QRIDGE \#1 TO TWO LANE ONE WAY TRAFFIC ONCE
BRIICE \#2 1 S COMPLETE.
5. REF. TO TRAFFIC CONTROL PLANS FOR MORE DETALLS AND

JAYMARK ENGINEERING CORPORATION

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS

PEDESTRIAN TRAIL 3 THROUGH RR8 CRR SLOPE PAVING - SECTION A-A
STA. 10433 TO STA $2+9274$ SEL SHT SHEET 76
C. 2 E2. 1

BRIIGE QUANTTITES				
Fort Bend County Bond Projects - Belknap Road				
(TEM,	me.	tem description	UnIt	ary.
Bridge at Kegegar's Bayou				
1	${ }_{\text {TXOOT }}^{\substack{\text { T }}}$	5" THICK REINFORCED Concrete SLAB	sr	763
2	${ }_{\text {TXPOOT }}^{\text {T }}$	TYPE RRB Concrette riprap slope paling	cr	259
3		$10^{\text {- THICK BRIIGE APPROACH SLAB }}$	cr	${ }^{68}$
4	TXDOT 536	Brioge media (3 Fet TIIE)	sF	${ }^{858}$
5	TXDOT 531	sidewalk	sF	2.002
6		PRESTRESSED Concretie slab eeam (4SB15)	${ }^{\text {LF }}$	520
7		PRESTRESSED CONCRETE SLAB EEAM (SSB15)	${ }^{\text {LF }}$	1.300
8	TXOOT 420	Renforced conc. abutment	cr	${ }^{50}$
9	TXXOOT 420	Remeorced conc. bent	cr	${ }^{37}$
10	TXOOT 416		${ }^{\text {LF }}$	${ }^{96}$
11	TXXOT 416		${ }^{\text {LF }}$	840
${ }^{12}$	TXOOT 420		cr	${ }^{16}$
13	TXOOT 450	TxOOT T223 Rall	${ }^{\text {LF }}$	260
14	TXOOT 450	TxDot cr23 Rall	${ }^{\text {LF }}$	280
15	TXXOT 454	SEALED EXPANSION Joint (4)\|SE-A)	LF	256
16	TX00t 540	Metal eeam guaro fence ((Oood post)	${ }^{\text {LF }}$	120
${ }^{17}$	T×00 540	METAL EEAM GUARD FENCE TRANS (TL2)	EA	8
18	TXOOT 544	GUARORALI END TREATMENT	EA	4
19	TXXOT 110	EXCAVATION(ChanNeL)	cr	1029
20	-xoot 423	Retannc wall	sF	1,96
21	Hc 450	Harris countr pedestran rall	${ }^{\text {LF }}$	141
22	TX007 531	A112" THICK SIIEWALL THRU SLOPE PAVING	sF	1,130

Appooch Chaolica at cuaropall Eno treatuents

$$
\begin{aligned}
& \sqrt{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suct }
\end{aligned}
$$

N ond ,
 Niden

TYPICAL SECTIONS

	$\star{ }^{\text {¢ }}$	
SEALED EXPANSION JOINTTYPE A without overlay		

DETAILS 9

DETAILS 10

CNIT Pros \#	ReS PRos \#	date	SCALE	Stut
17-2-11	008169	08,19.2022	N.T.S	
Give Br	DrAW BY	CHECKED BY	verfied by	180

TRAFFIC SIGNAL NOTES

general
UNLESS OTHERWISE SHOWN ON THE PLANS OR OTHERWISE DIRECTED, COMMENCE WORK AFTER SUNRISE
AND ENSURE CONSTRUCTION EQUIPMENT IS OFF THE ROAD BY SUNSET. KEEP ALL LANE CLOSURE BE TWEEN the hours of 9 am \& 3 PM unless permission received by
fort bend county Encineming.

GENERAL: RODOWAY U UMINATION AND EI ECTRICAL
For ROADWAY ILLUMINATION AND ELECTRICAL ITEMS, USE MATERIALS FROM PRE-QULLIFIE
PRODUCERS AS SHOWN ON THE CONSTRUCTION DIVISION (CST) OF THE TXDOT'S MATERIA

 Perform electrical work in conformance with the national electrical code (nec) and
The TxDot standard sheets.
 USI NG THE THERMAL FUSION PROCES
BOLTED CONNECTIONS ANO SPLICES.
general: trafeic signals

 LIST. CHECK THE LATEST LINKS ON THE TXDOT WEBSITE F

GENERAL: SITE MANAGEMENT
 assume ownersur of debis and dispose of at an aprold Lotat
control the dust caused by construction operations,
general: trafeic control and construction

GENERal: UTUTIES
CONSIDER THE LOCATIONS OF UNDERGROUND UTILITIIES DEPICTED IN THE PLANS AS APPROXXIMATE
AND EMPLOY RESPONSIBLE CARE TO AVOID DAMAGING UTLITY FACILITIES. ADVANCED FIELD
 IF THE CONTRACTOR DAMAGES OR CAUSES DAMAGE (BREAKS, LEAKS, NICKS, DENTS, GOUGES,
ETC.) TO THE UTILITY, CONTACT THE UTILITY FACILITY ONNER OR OPERATOR IMMEDIATELY.
 UTILITY COMPANY beFore beginning such work.
 ELECRICAL SERV ICE PROVIDER TO PERFORM THIS WORK. COSTS ASSOCIATED WITH
OEEENERGIIING THE POWR LINES OR OTHER PROTECTIVE MEASURES REQURED ARE AT NO
EXXPNSE TO THE CONTY

IF WORKING NeAR POWER LINES, COMPLY WITH THE APPROPRIATE SECTIONS OF TEXAS STATE LAM
AND FEDERAL REGULATIONS RELATING TO THE TYPE OF WORK INVOLVED. Perform electrical work in conformance with the national electrical code (nec) and
TxDor standari shemis. BEFORE BEGINNING ANY UNDERGROUND WORK, NOTIFY THE COUNTY AT

LTEM 5: CONTROL OF WORK

SUBMIT Shop drawings electronically for the fabrication of items as documented in table 1 below.
SUBMIT to ibafilaeoremicinty cov

Table 1

Spec No.'s	Product	Submittal Required	Approval Required (Y/N)	Contractor/ Fabricator P.E. Seal Required	Reviewing Party
680	Installation of Highway Traffic Signals	Y	Y	N	T
682	Vehicle and Pedestrian Signal Heads	Y	Y	N	T
684	Traffic Signal Cables	Y	Y	N	T
687	Pedestal Pole Assemblies	Y	Y	N	T
688	Detectors	Y	Y	N	A
SS	Screw-In Type Anchor Foundations	Y	Y	N	T

LTEM 416: DRHED SHAET EOUNDATIONS

INCLUDE THE COST For furnishing and installing anchor bolts mounted in the drilled shafts in
The Unit bid PRice for The various iamerer drilled shafis.

LTEM 502: BARBICADES, SUCNS, AND TRAFEIC HANDLING

FURNISH AND MA INTAIN THE BARRICADES AND WARNing signs, including the necessary temporary and
portable traff ic control devices, dur ing the various phases of construction. place and and
 UNIFORM TRAFF IC CONTROL DEVICES" FOR TYPICAL CONSTRUCTION LAYOUTS.
COVER WORR ZONE SIGNS WHEN work RELATED to the signs is not in progress, or when any hazard
ReLated To The signs no loncer exists.
 COVER OR REMOVE TTE PERMANENT SIGNS AND CONSTRUCTION SIGNS THAT ARE INCORRECT OR THAT DO NOT
APPLY TO THE CURENT SITAUTION FOR A PARTICUAR PHASE. Do not Mount sicns on drums or barricades, except those listed in the latest barricades and
CONSTRUCTION standard shetis. USE TRAFFIC CONES FOR DAYtime work only. Replace the cones with plastic drums during
Nightime hours. PLACE positive barriers to protect drop-off conditions greater than 2 ft. within the clear
zone that remain overight.

Lem 506: Temporary frosion, sfdimentation and environmental controls
the use of hay bales is not permitted as storm water pollution prevention plan (swp3) measures, THE STORM WATER POLLUTION PREVENTION PLAN (SWP3) CONSISTS OF TEMPORARY EROSION CONTROL
MEASURES NEEDED AND PROVIDED FOR UNDER THIS ITEM. THE DISTUREED AREA IS LESS THAN ONE MEASURES NEEDED AND PROVIDED FOR UNDER THIS ITEM. THE DISTURBED AREA IS LESS THAN NNE ACRE
AND US OF EROSIN CONTROL MASURES IS NOT ANT ICPATED. IF PHYSICAL CONDITIONS ENOUNTERED AT

CAUT ION!!!!

CALL BEFORE YOU DIG!

 (87) Texas One Call Syster

IDCUS

rPS
Texs PEEFITm Res \#F-.92

FORT BEND COUNTY, TEXAS

BELKNAP ROAD IMPROVEMENTS TRAFFIC SIGNAL NOTES

TRAFFIC SIGNAL NOTES

TEM 618: CONDU
WHEN BACKFILLING BORE PITS, ENSURE THAT THE CONDUITIS NOT DAMAGED DURING

 construct bore pits a minimum of 5 ft. from edge of base or pavement.

 inimum of 24 in. below the pavement surface,
if using casing to place bored conduit, the casing is subsidiary to the conduit. If PLACING THE CONDUIT UNDER EXISTING PAVEMENT TO REACH THE SERVICE POLES, BORE THE
CODUTI IN PLACE AND ETENTIT A MINIMUM DISTANCE OF 5 FT. BEYOND THE EDGE OF

USE MATERIALS FROM PRE-QUALIFIED PRODUCERS AS SHOWN ON THE TXDOT'S CONSTRUCTION
DIVISION (CST) MATERIAL PROOUCER'S LIST. CHEK THE LATEST LINKS ON THE TXDOT WEBSITE

item 620: fiectrical conductor
TEST EACH WIRE OF EACH CABLE OR Conductor after installation. incomplete
CIRCITS OR DMAE TO THE WIRE OR THE CABLE ARE CAUSE FOR

WHEN PULLING CABLES or conductors THROUGH CONDUIT, DD NOT EXCEED THE
MANUFACTURER' SRECOMMENDED PULLING TENSIONS. LUBRICATE THE CABLES OR
MANUFACTURER'S RECOMMENDED PULLING TENSIONS. LUBRI LCATE THE CABLES OR
CONDCTORS WITH A LUBRICANT RECOMENEED BY THE CABLE MANUFACTURER.
ensure that circuits test clear of faults, grounds and open circuits.
SPLIT BOLT CONNECTORS ARE ALLOWED ONLY FOR SPICES on Grounding
CONOUCTORS.
For Pedestal pole assemblies (ITEM 687) WITHIN THE PROJECT, PRovide
SINGLE POLE BREAKAWAY DISCONECCTS AS SHOWN ON THE CONSTRUCTION DIVISI MATERIAL PRODUCER's LIST. CHECK THE LATEST LINK ON THE TXDOT WEBSITE (CST)

 Project, sek item 7 OF THE STA
SPECIAL PROVISIONS TO ITEM 7.

LTEM 624: GROUND BOX
The ground box locations are aprroximate. Alternate ground box locations
May be used as irected, to avoid placing in sidewalks or drivewars.
Ground METAL GROUND box covers. bond the ground box cover and ground
conductors To a ground rod located in The ground box and to The system ground.
dURING CONSTRUCTION AND UNTIL PROJECT COMPLETION, Provide
ERSONNEL AND EQUIPMENT NECESSARY TO REMOVE GROUND BOX LIDS FOR INSPECTION,

CONSTRUCT CONCRETE APRRNS IN ACCORDANCE WITH THE LATEST
STANDAR SHEET ED (4) 14 . MOX MAE THE DEPTH OF THE CONCRETE APRON THE SAME AS
THE DEPTH OF TE GROND BX

THE REQUIREMENTS INCLUDED IN DMS-11070 AND DMS-11071 SUPERSEDE THE
REQUIREMENTS OF STANDARD SHEETS ED(4)-14 AND ED (13) -03 RESPECTIVELY,
Ifem 628: Fiectrical sfrvices

ten ceo howay tiafic sicurs

clearly mark or highlight on the shop drawings the items being furnished for this project. FURNISH LABOR, Tools, EOUIPMENT AND MATERIALS AS SHOWN ON THE PLANS AND SPECIFICATION FOR
A COMPLETE AND OPERAT ING SIGNAL INSTALLATION.

Staking in the field is subiect to approval. Verify stake locations of all signal poles with
fort bend count encinering before start of shaft drilling. Make adjustments in project construction, if nedde, due to conflicts with underground
UTILITIES. VERIFY all adustments with fort bend county encinerring. DO NOT AIM THE LUMINAIRE ARMS MOUNTED ON TRAFFIC SIGNAL POLES INTO THE INTERSECTION. AIM EACH
ARM PEREENICCLAR TO THE CENTELLINE OF THE RADAY IT IS INTENDED TO COVER, TO DEVELOP THE ARM PERPENDICLLAR
ALLOW THE ELECTRICAL WORK TO BE INSPECTED BY THE COUNTY. COMPLYING WITH THE PROVISIONS AND
REQUREMENT OF THE CONT ELETRICAL ROINANCE IS NOT REQUIRED. SUCH INSPECTION DOES NOT MAKE THE COUNTY A PARTY TO THIS CONTRACT.

 WHEN PULLING CABLES OR CONDUCTORS THROUGH CONDUIT, DO NOT EXCEED THE MANUFACTURER'S
RECOMMENDED PULING TENS IONS. LUBRICATE THE CABLES OR CONDUCTORS WITH A LUBRICANT AS RECOMMENDED BY THE CABLE MANUFACTURER.
Bond the controller housing, sional poles, and conduit to a minimum no. 6 awg stranded copper

WRAP SIGNaL head with dark plastic or suitable material to conceal the signal faces from the
Time of instalation until placing into operation. do not use burlap.
furnish signal heads from the same manufacturer.
UsE TyPE C high specific intensity grade sheeting for signs mounted under or adjacent to the
sigal heads.
For a steel mast arm pole assembly. hold the anchor bolts and conduits rigidly in place with
a welded steel template.
LEAVE a minimum of one full diameter thread exposed on each anchor bolt securing a signal
 MECHANICAL RELEASE HAND.
TO THE TERMINAL STRIPS.
the contractor may use ready mix concrete.
APpLY Membrane curing on concrete work in accordance with section 420.4.10.3, "Membrane
 be reauired.

SEE GENERAL NOTES SHEETS AND PROJECT NOTES - THE UTIL ITY LOCATIONS Shown hereon are
 TO COMMENCING WORK ON THE PROJECT. THIS
WWRK WIL NOT BE PAID FRR DIRETTY BUT
WILL BE SUBSIDIARY TO THE VARIOUS BID
ITEMS.
3. THE SEAL FOR RONALD J. THOMAS, PE OF RPS
APPEAS ON THIS SHEET FOR THE PROPOSED
 IVILTECH APPEAS ON THIS SHET FOR TI
ROPOSED STORM SEWER INCLUDE TNG THE PROPSED DITCHES) DESIGN.

CATION!!!

CALL BEFORE YOU DIG!

 or bast -stor call Call System (${ }^{\text {ratexas}}$ Texas One Call Syst

IDCUS

res

FORT BEND COUNTY, TEXAS

BELKNAP ROAD IMPROVEMENTS TRAFFIC SIGNAL
NOTES

TRAFFIC SIGNAL NOTES

LTEM 687: VEHICIF AND PEDESTBIAN SIGNAI HFADS
install two set screws on vehicle signal head mounting hardware fittings.
HeM 686: TRAFEIC STGNal POIF ASSEMBLIES (STFFL
for a steen mast arm pole assembly, hold the anchor bolts and conduits rigidly in
pLace wit a weldod stel template.
leave a minimum of one full diameter thread exposed on each anchor bolt securing a

 UNUSUAL LOCATIONS. PROVIDE THE DRILLED SHAFT DEPTH REGARLESS OF THE LENGTH OF THE
POLE FOUNDATINO. THE POEE FOUNDATION EPPH FROM THE SURFACE LEVEL TO THE ROADWAY
Level is a maximum of 4 FT., or as approved.
locate mast arm pole assemblies a minimum of a ft. from the roadway curb or pavement
edoc. after the AFTER THE TRAFFIC SIGNAL POLE ASSEMBLY IS PLUMB AND THE NUTS ARE TIGHT, TACK-WELD
EACH ANCHOR BOLT NUT IN TWO PLACES TO ITS WASHER. TACK-WELD EACH WASHER TO THE BASE
 ACCORDANE WIT
DAMAGE ON BOLTS, NUTS, AND WASHERS IN ACCORDANCE WITH SECTION A45.3.5, "REPAIRS

НЕM 687: PFDESTAL POIF ASSEMBI LES
FURNISH AND INSTALL SCREW-IN ANCHOR FOUNDATIONS IN ACCORDANCE WITH SPECIAL
 MATERIALS FURN ISHED IN ACCO
"PEDESTAL POLE ASSEMBLIES"

LIEM 688: PEDESTRIAN DETECTORS
Provide pedestrian push buttons a minimum of 2 in. diameter in the smallest
dimension.
install a rubber grommet or bushing between the push button assembly and the signal
pole to protect the conductors

TRAFFIC SIGNAL ITEMS - BELKNAP ROAD

ORT BEND COUNTY ENGINEERING - APPROVED SIGNAL EQUIPMENT LIST		
EQUIPMENT	MANuFacturer	MODE
traffic signal cabinet	Henke	P168Cs-ts2-1 P44 traffic signal cabinet
TRAFFIC Signal controller	ECONOLITE	Cob2110110000 Cobalt 2100 TRAFFIC SİNAL Controller
CONFLICT MONITOR	Eberle desion	006 -MMU16LEIP CONFLICT SMART MONITOR
Uninterruptible power supply	alpha technolgies	
remote battery monitoring system	alpha technolgies	2-STRING
ELD Monitoring unit	APPLIED Information	AI-500-085-02 HSM
Emergency Pre-Empt ion	Applied information	GLANCE - INC LUDED WIth al-500-85-02 FMU
led signal	DURALI IGHT	JXJ300-07-03 TXDOT ARROW LED - CLEAR LENS
		OX30
audible pedestrian push bbuttons	polara	
Signal and pedestrian poles	pelco	Pb-5100 SERIES PED POLE ALUMINUM
Sional and pedestrian housing	mCCain	M31825 Ped signal housing; color shall be black
PEdestrian countdown modules	dural ight	
Lumina ire fixture	PHILLIPS	LUMEC RFM 108w48LEDAK 62 R2M UnV dme FAWS RCD7 PH9 SP2
Cround box	TXDOT APPROVED LIST TXDOT APPROVED LIST	
Ui	Approved LIST	
radar detection system	ITERIS	vantage radius

SIGN SCHEDULE

Old Richmond Rd

Old Richmond Rd
Belknap Rd

LEFT TURN
YIELD
ON FLASHING

```
*)
```


©
 YELLOW ARROW

QUANTITY ESTIMATE

TRAFFIC SIGNAL POLE ITEMS			
TXDOT 618/6046	CONDT (PVC) (SCH 80) (2")	UNITS	QTY
TXDOT 618/6047	CONDT (PVC) (SCH 80) (2") (BORE)	LF	135
TXDOT 618/6053	CONDT (PVC) (SCH 80) (3")	LF	220
TXDOT 620/6009	ELEC CONDR (NO. 6) BARE	LF	36
TXDOT 624/6010	GROUND BOX TY D (162922) W/APRON	EA	2
TXDOT 682/6018	PED SIG SEC (LED)(COUNTDOWN)	EA	4
TXDOT 684/6007	TRF SIG CBL (TY A) (12 AWG) (2 CONDR)	LF	375
TXDOT 684/6009	TRF SIG CBL (TY A) (12 AWG) (4 CONDR)	LF	375
TXDOT 687/6001	PED POLE ASSEMBLY	EA	3
$*$	SCREW-IN ANCHOR FOUNDATION	EA	3
TXDOT 688/6001	PED DETECT PUSH BUTTON (APS)	EA	4
$*$	SIGN, PED, WALK SMB. W/DIR ARROW (R10-3eL) (9"X15")	EA	3
$*$	SIGN, PED, WALK SMB. W/DIR ARROW (R10-3eR) (9"X15")	EA	1
	$*$ SUBSIDIARY TO OTHER ITEMS (FOR CONTRACTOR'S INFORMATION ONLY)		

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS NTERSECTION OF w bellfort \& BELKNap
SUMMARY OF QUANTITIES FOR SIGNAL MODIFICATION

proposfo paving consiruction nates
1 ($41 / 2$ " reinforced concrete sidewalkcimax. SLope - 2%
2 SAWUT FROMHE FACE OF CURB, BREAK-OUT AND

3 Proposed 10" concrete curb.
4 PROPOSED 6" CONCRETE CURB.
5 detectable warning 2^{2} wioe red brick truncated domes.
6 Re-crade area, compact ano sod.
7 TYP. 7 REINFORCED CONCRETE RAMP IMAX. RUNNING SLOPE • $1: 12$
8 BRICK PAVER WTH MATCHING COLOR
$94^{4} 1 / 2^{\prime \prime}$ REINFORCED CONCRETE RAMP MAX. SLOPE - 8.3\%
10 Reinforced $6^{\text {" }}$ concrete pavement for medians

-see detail b

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS bersection of w bellfort \& belknap

> CURB RAMP
> PAVING PLAN

AT W BELLFOR

NOTES:

1. LOCATION OF UTILITIES SHOWN ARE APRROXIMATELIT IS THE CONTRACTOR' TO COMMENCING WORK. THE CONTRACTOR IS FULLY RESPONSIBLE FOR ANY OAMAES CAUSED BY HIS FAILURE TO LOCATE AND PR
WHETHER UNDERGROUND, ABOVE GROUND OR OVERHEAD.
2. CALL THE FOLLOWING NUMBERS FOR LOCATION OF UNDERGROUND FACILITIES
 AND 1-800-344-8377.
3. LOCATIONS OF CENTERPOINT FACILITIES ARE APPROXIMATE AND HAVE BEEN
VERIFIED IN THE FIELD. CONTRACTOR TO INSTALL 2" RMC AND WEATHER HEAD VERIFIED IN THE FIELD. CONTRACTOR TO IN
ON EXISTING CPE POWER POLE FOR SERVICE.
4. ALL CONSTRUCTION SIGNS AND BARRICADES SHALL CONFORM TO THE TEXAS MANUAL
5. CONTRACTOR SHALL RESTORE THE CONSTRUCTION AREA TO ORIGINAL CONDITION
6. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO COORDINATE WITH FORT BEND
7.
8. ALL ELECTRICAL AND CONDUTT WORK SHALL CONFORM TO NEC CODES.
9. keep the existing traffic signal timing and phasing.

TRAFFIC SIGNAL POLE AAND CABINET INFORMATION				
Pole No.	SIGNAL POLE DESCRIPTION	FOUNDATION	W BELFORT	OFFSET
A	4"x10' PEDESTRIAN POLE WITH PEDESTRIAN SIGNAL HEADS W1, W8 AND PUSH BUTTON PB1, PB8	SCREW-IN ANCHOR	$19+92.4$	56.2' LT
B	$44^{\prime \prime} 10^{\prime}$ PEDESTRIAN POLE WITH PEDESTRIAN SIGNAL HEADS W7 AND PUSH BUTTON PB7	SCREW-IN ANCHOR	20+01.2	47.7. RT
C	4"x10' PEDESTRIAN POLE WITH PEDESTRIAN SIGNAL HEADS W2 AND PUSH BUTTON PB2	SCREW-IN ANCHOR	20+85.8	59.2' LT
D	EXISTING SIGNAL POLE WITH MAST ARM	EXISTING	ExISting	EXISTING
E	EXISTING SIGNAL POLE WITH DUAL MAST ARMS	EXISTING	ExISting	ExISting
F	EXISTING CABINET	EXISTING	ExISTING	ExISting

PROPOSED (APS) ACCESSIBLE

 PEDESTRIAN SIGNAL UNITS

Pb1

FORT BEND COUNTY, TEXAS
BELKNAP ROAD IMPROVEMENTS
BECTION OF W BELLFORT \& BELKNAP RD
SIGNAL MODIFICATION MISCELLANEOUS DETAILS
general notes for all electrical work
The location of all conduits, junction boxes, ground boxes, and
diagrammatic and may be shifted to accommodate field conditions.
Provide new and unused materials. Ensure that all materials and installations comply with
the applicable articles of the National Electrical Code (NEC), TXDOT standards and

 acceptable equal to a NEMA listed device. Acceptable devices may hove both o NEMA and IEC
II sting. Faulty fabrication or poor workmanship in on material, equipment, or instal lotion is justification for rejection. Replace or reinstall rejected material or equipment at no
additional cost to the Department.
Miscellaneous nuts, bolts and hardware, except for high strength bolts, may be stainless
steel when plans specify galvanized, provided the bolt size is $1 / 2$ in. or less in diameter. Provide the following test equipment os required by the Engineer to confirm compliance with
the contract and the NEC: voltmeter, ammeter, megohm meter (1000 vol D CC), ground resistance tester, torque wrenches, and torque screwdrivers. Ensure all equipment has been proper ty
calibrated within the lost year. Provide calibration certification to the Engineer upon colt orated with the last year. Provide calibration certification to the Engine
request. Operate test equipment dur ing inspection as requested by the Eng miner.
5. Install grounding as shown on the plans and in accordance with the NEC. Ensure all metallic conduits, metal poles; luminaires; and metal enclosures are bonded to the equipment ground ing
conductor. Prov de stranded bore copper or oren insula toted grounding conductors. Ground rods,
connectors, and bonding jumpers ore subsidiary to the var ions bid items.
6. When required by the Engineer, notify the Department in writing of materials from the

CONDUIT
. materials
 For Construction And Maintenance of Highways, Streets, And Bridges, " latest edition. Provide

Provide galvanized steel RMC for all exposed conduits, unless otherwise shown on the plans.
Properly bond all metal conduits. Unless otherwise shown on the plans, provide junction boxes with a minimum size as shown in
the following table, which applies to the greatest number of conductors enter ing the box the following table, which applies to the greatest number of conductors enter ing the box
through one conduit with no more than four conduits per box. When a mixture of conductor sizes is present, count the conductors os if oIl are of the larger size.
not applicable to the table, size junction boxes in accordance with NEC.

AUG	3 CONDUCTORS	5 CONDUCTORS	7 CONDUCTORS
$\# 1$	$10^{\prime \prime} \times 10^{\prime \prime} \times 4^{\prime \prime}$	$12^{\prime \prime} \times 12^{\prime \prime} \times 4^{\prime \prime}$	$16^{\prime \prime} \times 16^{\prime \prime} \times 4^{\prime \prime}$
$\# 2$	$8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$	$10^{\prime \prime} \times 10^{\prime \prime} \times 4^{\prime \prime}$	$12^{\prime \prime} \times 11^{\prime \prime} \times 4^{\prime \prime}$
$\# 4$	$8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$	$10^{\prime \prime} \times 10^{\prime \prime} \times 4^{\prime \prime}$	$10^{\prime \prime} \times 10^{\prime \prime} \times 4^{\prime \prime}$
$\# 6$	$8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$	$8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$	$10^{\prime \prime} \times 10^{\prime \prime} \times 4^{\prime \prime}$
$\# 8$	$8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$	$8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$	$8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$

Junction boxes with on internal volume of less than 100 cu in. and supported by purpose and supported by connection of two or more rigid metal conduits. Secure conduit within 3 ft . of the enclosure or with in 18 i in. of the enclosure. if all
conduit entries are on the same side. Mechanically secure all junction boxes with on internal volume greater than 00 cu . inches.
Provide hot dipped galvanized cost iron or sand cast aluminum outlet boxes for
junction boxes containing only 10 AWG or 12 AWG conductors. Do not use die cost Junction boxes. ontoiningonly 10 AWG or 12 ANG conduct
 dunt in boxes mace from gal vanized steel sheeting, listed and approved for outdoor
use, unless otherwise noted on the plans. size olin, galvanized steel junt ion boxes Use, unless otherwise noted on the plans. Size all galvanized seel junction boxes
in occordonce with the NEC. Provide junct ion boxes for IMC conduit systems that meet in accordance with the NEC. Provide junction boxes for IMC conc
the some requirements for junction boxes used with RMC systems. Provide pVC junction boxes intended for outdoor use on PVC conduit systems, unless
otherwise noted on the plans.

 metal elbow is not required if the entire RMC elbow is encased in o minimum of 2 in. of
concrete. PVC extensions are al lowed on these concrete encased rigid metal elbows. RMC or
PVC elbows are subsidiary to various bid items.
9. When required, provide High-Density Polyethylene (HDPE) conduit with factory installed internal
conductors according to Item 622 "Duct Coble. At the Contractor's request and with approval
 conduit bid under Item 618 . Ensure bored HDPE substituted for PVC is schedule 4 and of the some
size PVC cal led for in the plans. Ensure the substituted HPE meets the requirements of Item 62 ,
except that the conduit is sun l except that the conduit is supplied without foctory-installed conductors. Moke the transition of
the HDPE conduit to PVC (or RMC elbow when required) ot the bore pit. Provide conduit of the size
 and schearle
foundot ions.
foundot ions.
Use two-hole straps when supporting 2 in. and larger conduits. On electrical service poles,
proper IV sized stainless steel or hot dipped galvanized one-hole standoff strops are allowed on
the service riser conduit.
B. Construction methods

Provide and install expansion joint conduit fittings on all structure-mounted conduits at
the structure's expansion joints to allow for movement of the conduit. In addition provide

2. Space all conduit supports at maximum intervals of 5 ft. Instal conduit spacers when attaching metal conduit to surface of concrete structures. See "Conduit Mounting Options"
on ED (2). Install conduit support within 3 ft. of all enclosures and conduit terminations.
Do not attach conduit supports directly to pre-stressed concrete beams except as shown
specifically in the plans or as approved by the Engineer.
. Unless otherw se shown on the plans, jack or bore conduit placed beneath existing roadways,

5. When placing conduit in the sub-grade of new roadways, backfill all trenches with excavated
material unless otherwise noted on the plans. When placing conduit in the sub-base of

6. Provide and place warning tape approximately 10 in . above all trenched conduit as per Item 618. Dur ing construction, temporarily cap or plug open ends of all conduit and raceway immediate by
after installation to prevent entry of dirt, debris and animals. Temporary cops constructed of

8. Ensure conduit entry into the top of any enclosure is waterproof by installing conduit sealing
hubs or using boxes with threaded bosses. This includes surface mounted safety switches, meter

9. Fit the ends of all pvc conduit terminations with bushings or bell end fittings. Provide and
install a grounding type bushing on all metal conduit terminations.
0. Install a bonding jumper from each grounding bushing to the nearest ground rod, grounding lug,
or equipment ground ing conductor. Ensure all bonding jumpers ore the some size os the equipment

At all electrical services, install a 6 AWG solid copper grounding electrode conductor
2. Place conduits entering ground boxes so that the conduit openings are between 3 in. and 6 i
from the bottom of the box. See the ground box detail on sheet ED (4).
 the Engineer. Seal conduit immediately after completion of conductor installation and pull
tests. Do not use duct tape os a permanent conduit seoliont. Do not use silicone caulk as o
4. File smooth the cut ends of all mounting strut and conduit. Before installing, paint the field
cut ends of all mounting strut and RMC (threaded or non-threaded) with zinc rich paint (94\%, or

 ar

ovide o solid copper 6 AWG groundi service equipment pe the concrete encosed grounding electrode or the ground rod ot the service location. Connect the grounding electrode conductor to the ground rot
with a UL isted connector in occordance with DMS 11040. Connect the ground ing electrode conductor to the concrete encased grounding electrode as shown in the
plans.
Where two or more circuits are present in one conduit or enclosure, permanently
identify the conductors of each branch circuit by attaching a non-metallic tog
 two strops, lorge enough to indicate circuit number, letter, or or other
identificotion oss show in the plons. Print circuit identificotion on the tos
with a permanent marker.

 moter iols, breakoway disconnects, splice covers, and fuse holders' ore
construction methods
Use only oflat, high tenside strength polyester fiber pull tope for puling
conductors through the conduit system. After installing conductors in conduit, perform conductor puli test. If a conductor connot be freely pulled, make any needed alterations or repairs at no additionol cost to the department. Perfor
insulation resistance tests in occordance with Item 620. Coordinate with the ngineer to witness the tests.
 boxes when pillied through with no, splice. Leave 1 ft. min imum,
length of conductor of enclosures, weotherheods ond pole boses.

Moke splices only in junction boxes, ground boxes, pole bases, or electrical
enclosures and use only listed compression or screw type pressure connectors, terminal blocks, or split bolt connectors. Insulate splices with heovy wall heot shr ink tubf ing or gel-filled insulating splice covers to provide o
wotertight splice. Overlop conductor insulation with heat shrink tubing
 the individual conductors and the heat shrink tubing. Ensure the tape extends
 Size and install gel-filied insulating splice covers according to
monufacturer's specifications when used in ploce of heot shrink tubing.
 occumulation of woter.
pore por the pore When terminating conductors, remove the insulation and jocketing moter ial wi thout
nicking the individual stronds of the conductor. Conductors with nicked individual

Replace conductors and cobles that are damaged heyond repain or
9. Do not repair damaged conductors with duct tape, electrical tope, or wire nuts.
Use only approved spl icing methods.

Do not terminate more than one conductor under a single connector, unless the
connector is roted for multiple conductors. Do not exceed the pressure connector

Instal breakawoy connectors on conductors bid under It 620 whenever those
conductors pass through o breakoway support device. Follow manyfocturer's

 single opening in aboot. Provide waterproof boots with the correct number offer Single Opening
openinos. Leove unus.
as shown on the MP.

Provide and install a separate stronded equipment grounding conductor
(EGC) in oll conduits thot contain circuit wiring of 50 yolts or more. Unless show elsewhere, size the EGC to be the some size os the morge.
Current corrying conductor conta ined in the condit. Ensure all EGCs
 instal lations.
under I tem 620 .
temporary wiring
Install temporary conductors and electrical eauipment in accordance with
the NEC orticle "Temporary Instollations" and Deportment stondord sheets. Provide o ground fault circuit interrupter (GFCI) for power outlets for
portoble electrical equipment, power tools, ice machines, ice storage bins

Use listed wire
where opproved.
. Enc lose conductor splices within a listed enclosure or ground box, or ensure
the splices ore more thon 10 ft. obove grade vertically ond more tha 5 ft

 the vertical clearance to ground is ot least 18 ft . When measured at' +
towest point. Ground messenger wires that support power conductors in

Protect ond when necessary repair any existing electricol conduits uncovered
during the construction process in atimely monner ond in conformance with
the NEC.

SPLICE OPTION 1
Compression Type

GROUND RODS \& GROUNDING ELECTRODES
A. material information
 plans sheets. Concrete encased grounding electrodes may be called for in in
b. CONSTRUCTION METHODS

Furnish auxiliary ground rods for ifightning protection and install in soil
concrete, or both, as called for in the plons. For ground rods installed and
in conerete, ensure the connection of the conductor to the ground rod it
readily accessible for inspection or repairs. For ground rods instal ied in
a note os o inger pote
. Install ground rods so the imprinted part number is at the upper end of
. Remove 011 non-conductive coatings such as concrete splatter from the rod
5. Route oll conductors os short ond stroight as possible for connection to
iogntning protection ground rods. When obend is required, ensure a minimum
rodius hend of four inches for these condutors . Unless otherwise called for in the plons, protect grounding electrode conductors with non-metolndi conduit. When protecting grounding electrode
conductors with metol conduit, provide ond instoll o ground ing type bushing
ond poroerly sized bonding it maer on each end of the and properly sized bonding jumper on each end of the metal conduit.

SPLICE OPTION 2 Split Bolt Type

ELECTRICAL DETAILS CONDUCTORS

ED (3)-14

PLAN VIEW
APRON FOR GROUND BOX
(1) Uniformly space ends of conduits within the ground box. Position ends of conduits so
that ground box wallis do not interfere with the installation of grounding bushings that ground box walls
or bell end fittings.
(2) Maintain sufficient space between conduits to allow for proper installation of bushing.
(3) Place aggregate under the box, not in the box. Aggregate should not encroach on the
(4) Install a grounding bushing on the upper end of all RMC terminating in o ground box. Ground RMC elbows when any part oof the elbow is less than 18 in. below the bottom of the ground box. Install a Prc bushing.
conduits terminating in a ground box.

GROUND BOX DIMERS IONS	
TYPE	OUTSIDE DIMENSIONS (INCHES) (Width \times Length \times Depth)
A	$12 \times 23 \times 11$
B	$12 \times 23 \times 22$
C	$16 \times 29 \times 11$
D	$16 \times 29 \times 22$
E	$12 \times 23 \times 17$

PLAN VIEW

GROUND BOXES

A. materials
 accordance with Depart m.
Item 624 "Ground Boxes.
2. Provide Type A, B, C, D, and E ground boxes os shown in the plans, and as I listed on
the Material producers List (MPL) on the Deportment web site under "Roadway IIIuminotion no Electrical Supplies, " It Mp 624
3. Ensure ground box cover is correctly labeled in accordance with DMS 11070 .
4. Provide larger ground boxes in accordance with Item 624 and as shown in the plans.
B. CONSTRUCTION METHODS

1. Remove oil grovel and dirt from conduit. Cap all conduits prior to placing aggregate
 least 9 in
aggregate.
2. Cast ground box aprons in ploce. Reinforcing steel may be field bent. Ensure the depth of concrete for the apron extends from finished grade to the top of the aggregate
under the boo. Ground box aprons, including concrete and reinforcing steel, ore under the box. Ground box aprons, including concrete and reinfo
subsidiary to ground boxes when called for by descriptive code.
3. keep bolt holes in the box clear of dirt. Bolt covers down when not working in ground
4. Install all conduits and ells in a neat and workmanlike manner. Uniformly space
conduits so grounding bushings and bell end fittings can easily be installed.
5. Temporarily seal all conduits in the ground box until conductors are installed
6. Permanently seal conduits immediately after the completion of conductor installation

7. when o ar o is resent

When o ground rod is present in a ground box, bond all equipment grounding conductors
together and to the ground rod with listed connectors.
8. When a type B or D ground box is stacked to meet volume requirements, it is allowable
to cut on appropriately sized hole for conduit entry in the side wall ot least 18 inches to cut on app
below grade.
9. If an existing round box in - equipment grounding conductor wi tho 3 ft. long stranded bond ing jumper the some size equipment grounding conductor wi handing jumper is subsidiary to various bit items. Verify existing ground boxes with me
fully describing the work required.
0. If other ground boxes with metal covers are within the project limits but are not part of the contr oct, the Engineer may direct the Contractor to bond the metal covers,
identifying the specific boxes in writing. This work will be paid for separately.

1. Bond metal ground box covers to the grounding conductor with a tank ground type lug.

Texas Department of Transportation

Tratitic operations Striction Standard

ELECTRICAL DETAILS

 GROUND BOXES$E D(4)-14$

 circuit breaker ponels, ond ronch circuit breakers as show, on the Electron ical service

Provide all work, materials, services, and any incident
complete electrical service os specified in the plons.
Coordinate with the Engineer and the utility provider for meter ing and compliance
with utility reauirements. Primary 1 ine extens ions, connection

 with the utility pror
work os opproved.
5. The enclosure manufacturer will provide Master Lock Type 2 with bross tumb lers
 Unless otherwise appr
locks ore instal led.
 When

- When galvanized is specified for nuts, screws, bolts or miscellaneous hardware,
stoinless steel may be used.

9. All electrical service conduit and conductors attached to the electrical service
inclucing the riser or the eloow below ground ore subsidiory to the electrical

 Use of I i quidtight flexible metal conduit (LFMC) is al lowed between, the meter and
service encl osure when they ore mounted 90 to 180 degrees to eoch other. Size the sFMC the same size as service entronce conduit. LLMC must not exceed 3 feet in the

10. Ensure a 11 mounting har
compony specifications.
11. For oll electrical service enclosures listed under Item 628 on the MPL, the UL 508
enclosure monufocturers, will prepare ond summit a schematic drowing uni aue to each

 Do not install conduit in the back woll of a service enclosure where it would
penetrote the equipment mount ing pone I inside the enclosure. Provide oronding

SERVICE ASSEMBLY ENCLOSURE

2. Type gol vonized steel (GS) enclosures moy be used for Type c pone lor Theords

3. Provide aluminum (AL) and stainless stee) (SSS) enclosures for Types A, C
ond D OCor once with DMS
not point stoinless steel. $11080,11081,11082,11083$, ond 11084 . Do

MAIN DISCONNECT \& BRANCH CIRCUIT BREAKERS

1. Field drill flonge-mounted remote operotor hondle if needed, to
ensure honde is lockable in both the "On" ond "Off" positions. 2. When the utility compony provides atronsformer lorger than 50 kva,
verify that the ovailoble foult current is less thon the circuit breaker.s ompere interrupting copaci ity (AICC roting and provide
documentotion from the electric utility provider to the Engineer.

PHOTOELECTRIC CONTROL

1. Provide photocell as 1 isted on the MpL. Move, adjust, or shield the
photocell from stroy or omb ient night time iight to ensure proper

* ELECTRICAL SERVICE DATA												
$\begin{gathered} \text { Elec. } \\ \text { Service } \\ \text { ID } \end{gathered}$	$\begin{gathered} \text { Plan } \\ \text { Sheet } \\ \text { She } \end{gathered}$	Electricol Service Description	$\begin{aligned} & \text { Service } \\ & \text { Conduit } \\ & \text { o } \end{aligned}$	$\begin{array}{c\|} \hline \text { Service } \\ \text { Conductors } \\ \text { No./Size } \end{array}$	$\begin{aligned} & \text { Safety } \\ & \text { Switch } \\ & \text { Amps } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Main } \\ \text { CK.. BKr. } \\ \text { Pole/Amps } \end{array}$	$\begin{gathered} \text { Two-Pole } \\ \text { Controctor } \\ \text { Amps } \end{gathered}$	$\begin{aligned} & \hline \begin{array}{l} \text { Ponelbd/ } \\ \text { Loodcenter } \\ \text { Amp Rating } \end{array} \end{aligned}$	$\begin{aligned} & \text { Branch } \\ & \text { Circuit } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { Branch } \\ & \text { CK+. BKr. } \\ & \text { Pole/Amps } \end{aligned}$	$\begin{aligned} & \text { Bronch } \\ & \text { Circuit } \\ & \text { Amps } \end{aligned}$	$\begin{aligned} & \text { KVA } \\ & \text { Lood } \end{aligned}$
SB 183	289	ELC SRV TY A 240/480 100 (SS) AL (E) SF (U)	2 "	3/\#2	100	2P/100	100	N/A	Lighting NB	2P/40	26	28.1
									Lighting SB	2P/40	25	
									Underposs	1P/20	5	
NB Access	30	ELC SRV TY D 120/240060(NS) SS (E) TS (0)	$11 / 4 "$	3/\#6	N/A	2P/60		100	Sig. Controller	1P/30	23	5.3
							30		Luminaires	2P/20	9	
									CCTV	1P/20	3	
2nd \& Main	58	ELC SRV TY T 120/240 000 (NS) CS (N) SP (0)	$1^{1 / 4}{ }^{\prime \prime}$	3/\#6	N/A	N/A	N/A	70	Flashing Beacon 1	1P/20	4	1.0
									Flashing Beacon 2	1P/20	4	

* Example only, not for construction. All new electrical services must hove
electrical service data chart specific to thot service as shown in the plons.
** Verify service conduit size with utility. size moy change due to utility meter
requirements. Ensure conduit size meets the Notional ELectrical Code.

EXPLANATION OF ELECTRICAL SERVICE DESCRIPTIVE CODE
ELEC SERV TY $X X X X / X X X X X X$ ($X X$) $X X(X) \quad X X(X$
Schemotic Type
Service Voltoge V
Disconnect Amp Ratin
oer indicotes main
The
(SS) = Sofety Switan in only

TOP MOUNTED PHOTOCELL Instoll conduit strop max imum 3 feet
from box. 5 foot maximum spocing
between strops supporting conduit.
(E) $=$ Inside Service/Enclosure
$(T)=\begin{aligned} & \text { Mounted } \\ & \text { Top. of pole }\end{aligned}$
$(\mathrm{L})=$ Lum of pore mounted
$(N)=$ Nonel No Photocell
$=\underset{\text { Nonerno Photocell It or }}{\text { Lighting Contoctor Required }}$
Service Support Type
GC= Granite concrete
$\mathrm{CC}=$ Other concret
TP P Timber pole
SD
$S P=S+e=1$ pole
$S F=S t=e l$
frome
SF Steel frame
$C T=$ Sole oy others or paid
for seporately

TS $=$ Service on traffic
sinnat pole
PS $=$ Pedestol Service
$0=\begin{aligned} & \text { Overheal S Service Feed } \\ & \text { from Utility }\end{aligned}$
from Uqility
Unoereronond Service Feed
from Utility

Texas Department of Transportation

ELECTRICAL DETAILS SERVICE NOTES \& DATA

ED (5)-14

Le:	ed5-14.dgn				
(1) Tx00T	October 2014	cowr	seer	098	Hicamer
			cownr		
		${ }_{0} 1.5$			${ }_{2}$

SUPPORT TYPE STEEL POLE (SP) AND STEEL FRAME (SF)
 steel or stainless steel channel strut, 1 $1 / 2$ in. or $15 / 5$ in. wide by 1 in. up to $33 / 4$ in.
deep Unistrut, Kindorf, deep Unistrut, Kindorf, B-I ine or equal. Bolt, or weld oll channel ond hardware to vertical
members os opproved. Do not stack ohonnel. File smooth and paint field cut ends of oll channel
with zinc-rich paint before installing.

Provide poles for overhead service with on eyebolt or similar fitting for attachment of the
service drop to the pole in conformance with the electric utility provider's specifications.
 anchor bolts for overhead service supports. Ensure anchor bolts have 3 in of thread, with
$31 / 4$ in. to $31 / 2$ in. of the exposed onchor bolt projecting above finished foundotion. Provide and install leveling nuts for all anchor bolts.
4. Bond one of the onchor bolts to the rebor cage with 6 AwG bare stranded copper conductor. Use
|isted mechanical cornectors rated for embedment in concrete. See Inset B.
5. Furnish and install rigid metallic ells in all steel pole and steel frame foundations for all
conduits entering the service from underground.
6. Use class C concrete for foundations. Ensure reinforcing steel is Grode 60 with 3 " of
unobstructed concrete cover. lil
 Provide properly sized hole through the bottom of the enclosure for the service grounding electrode
condutor. Ensure electrical service grounding electrode conductor is os short and straight os poss
froutt from the enclosure to the tank ground fitting. For steel frame service supports, provide and instal|
tonk ground fitting on steel frome post. Instoll service ground ing electrode conductor in a non-metal conduit or tubing trom the enclosure to. the steel frame post. connect electrical service grounding
electrode conductor to the tonk around fiting. See stel frome ond steel pole detoils ond Inset A

 grounding bushings where RMC terminates in the
is $f i t t e d$ into a sealing hub or threaded boss.
8. If Steel pole or frame is painted, bond each separate painted piece with a bonding jumper attached to
9. Provide $1 / 4 "$ - 20 mochine screws for bonding. Do not use sheet metal screws. Remove oll nonconductive material at contact points. Terminate bonding jumpers with Iisted devices. Instoly
minimum size 6 AWG stranded copper bonding jumpers. Make up all threoded bonding connections wrench \dagger ight
0. Avoid contact of the service drop and service entrance conductors with the metal pole to
prevent abrasion of the e insulated . Shop arawings are not reauired for service support structure unless specifically stoted
elsewhere or directed by the Engineer.

WITH SAFETY SWITCH FRONT VIEW 4-\#5 reinforcing
bors and \#2 spir
ot 6 " pitch (typ.

without safety switch
ERVICE SUPPORT TYPE SF (U) - UNDERGROUND SERVICE

WITH SAFETY SWITCH
SERVICE SUPPORT TYPE SP

WITHOUT SAFETY SWITCH

INSET B

24 " dio. $\times 36$ " dep
foundotion 4 -\#5
reinforcins
reinforcing bors
ond \#2 spiral
(ty
WITH SAFETY SWITCH SERVICE SUPPORT TYPE SP (U) UNDERGROUND SERVICE

POLE TOP PLATE

BASE PLATE DETAIL

BOTTOM OF POLE
SERVICE SUPPORT TYPE SF \& SP

TOP VIEW
SERVICE SUPPORT TY SF (O) \& SF (U)

Texas Department of Transportation

ELECTRICAL DETAILS
SERVICE SUPPORT
TYPES SF \& SP

> ED (7)-14

TRAFFIC SIGNAL NOTES

2. Include on eaqimment grounding conductor in all conduits throughout
the electrical system. Bond oll exposed metal parts to the grounding the electr
conductor.
3. Provide roadway Iuminaires, when reauired, in accordance with the
materiol and construction sections of Item 610, "Roadway Illuminotion materiol and construction sections of Item 610 , "Roadway II IUminot
Assembl lies, " except for performance testing of lumina ires. Test

4. If internally illuminated street name signs are approved for use,
ground the fixture to the pole with o 12 AWG green XHHW conductor.
5. Bond anchor bolts to rebar cage in two locotions us ing \#3 bars or
6 AWG stronded copper conductors. Use listed mechonical connectors GAWG stranded copper conductors. Use listed mechoni cal connectors
rated for embedment in concrete. See TXDOT standord TS-FD for further
detoils.
6. Drill ond top signal poles for $1 / 2$. in $\times 13$ UnC. tank ground fitting.
Provide ond instal tonk ground $\mathrm{f}+\mathrm{ting} 4$ in to 6 in. directly beiow
electrical service enclosure. Provide electrical service enclosire. Provide properiy sized hole through the
bottom of the enclosure for the service grounding electrode conductor. bottom of the enclosure for the service grounding el ectrode conductor.
Connect the el ectritol service grounding electrode oonductor to the tonk
around titing Ensure electricol service erounding electrode conductor
is os short
 ground fitting. see Inset A detai! for further information. Size service
entronce conduit and branch circu't conduit os shown in the plons. 7. Mount electrical service enclosure ond meter to signal pole with stainless
 each enclosure. Instoll properly sized stoin iess steel woshers on each bolt
in the enclosure. Bond or drill. ond top properly sized stond-off strops to signal pole for attoching conduit.
7. Conduct pull tests and insulation resistance tests on all illumination and
power conductors as required in Item 620 E ${ }^{\text {I lectricical Conductors" and }}$ ED(3).

8. Lock all enclosures and bolt down all ground box covers before applying power
to the signol instollotion.
9. Terminate conduits enter ing the top of enclosures with o conduit-sealing hu
or threaded boss such os meter hub. Install o grounding bushing on all metal or threaded boss such as meter hub. Install a grounding bushing on all met
conduits not connected to conduit-seal ing hub or threaded boss. Bond the
orounding bushing to the grounding bushing to the ground bus with o bond ing jumper. Sea oll conduit
entering enclosures with duct seal or expond ing foom. Do not use silicone to
seal condit ends. enter ing enclosure
seal conduit ends.
For oll condults, ensure the burial depth is a minimum of 18 "i". Ensure the
minimum burial depth for conduit ploced under a roadway is $24{ }^{\text {. }}$.

See TS-CF standord for
conduit and ground ing
conduit ond ground ing
requirements. See layout
sheets
sheets for ground box
locotions and ony additional

ELECTRICAL DETAILS TYPICAL TRAFFIC SIGNAL SYSTEM DETAILS

ED (8)-14

PEDESTAL SERVICE NOTES

- Manufacture pedestal electrical services in accordance with Departmental Mater ial
Specificotions (DMS) 11080 "Electrical Services", 11085 "Electrical Services-Pedest PS)" ond Item 628 "Electrical services. "Provide pedestal electrical services as I isted on the Material Producers I ist (MPL) on "the Department's web site under
"Roadway IIIumination ond Electrical Supplies, "Item 628 . Ensure oll mounting hordware ond instollotion details of services, "meet utility company specitications.
contoct the local utility company for oporoval of pedestal details pritor to Contact the local utility company for approval of pedestal details prior to
installing the electrical pedestal service. Submit any changes required by th utility compony prior to manufacturing the pedestal enclosure.

2. When a meter socket is required, provide a socket with a minimum 100 amp rating that
complies with locol utility requirements.
. Provide class a concrete for pedestol service foundations in occordonce with Item 420, "Concrete Substructures," except that concrete will not be paid for directly
3. Provide \#4 reinforcing steel for foundations in accordance with Item 440, "Reinforcement
for Concrete."
4. Install $1 / 2$ in. $\times 2 / 16$ in. minimum length concrete single expansion type anchors for mounting pedestal enclosure to foundation. Anchor location to match mount ing holes in
eoch corner of enc losure. Secure eoch of the four corners of the pedestal enclosure to the onchors in the foundation withoch/2 in. golvanized or stainless steel machine thread
bolt, a properly sized locknut and a flat washer.
5. Finish top of concrete foundotion in a neat and workmanlike manner. If leveling washers
are used, ensure no more than $1 / 8$ in. gap at any corner. Do not exceed a are used, ensure no more than $1 / 8$ in gop ot ony corner. Do not exceed a maximum dip of
rise in the founclotion of $1 / 8$ in. per foot. when properiy instolled, ensure the top of
the service enclosure is level the service enclosure is level front to bock ond side to side within $1 / 4$ in. Repair
rocking or movement of the service enclosure ot no odditional cost to the deportment.
6. Do not use liquidtight flexible metal conduit (LFMC) on pedestal type services.
7. Ensure oll elbows in the foundation are sized os per utility provider's conduit requirements
for underground conduit and feeders. PVC extensions may be installed provided the ends of the Figid metal conduits are mare than 2 in. below the top of the concrete foundotion, where rigid metal conduits are more than 2 in. below the top of the concrete foundotion. Where
extension conduits are metal, grounding bushings must be instolled with o bonding jumper
properly terminated.

SECTION A-A

SIDE VIEW
TYPE C shown, TYPE A similar except that TYPE A shall have panel. CB Hondies shall protrude through hinged deodfront trim.

ELECTRICAL DETAILS ELECTRICAL SERVICE SUPPOR PEDESTAL SERVICE TYPE PS

ED (9) - 14

	FOUNDATION DESIGN TABLE														
	FDNTYPE	$\begin{aligned} & \text { DRILED } \\ & \text { SHAFT } \\ & \text { DIT } \end{aligned}$	$\underset{\substack{\text { REINFORCING } \\ \text { STEEL }}}{ }$		EMBEDED DRILLED SHAFT LENGTH-f+(4), (5), (6)			ANCHOR BOLT DESIGN				$\begin{aligned} & \text { FOUNDATION } \\ & \text { DESIIND (2) } \\ & \text { MOMEND } \end{aligned}$		typical application	
			$\underset{\substack{\text { VERT } \\ \text { BARS }}}{ }$	${ }_{8}^{\text {SPIRAL }}$ PITCH	TEXAS	NE PE,	ROMETER	$\begin{gathered} \text { ANCHOR } \\ \text { BOLT} \\ \text { OIA } \end{gathered}$	$\underset{(\mathrm{kyi})}{(\mathrm{ky})}$	$\begin{aligned} & \text { BOLT } \\ & \text { CIR } \\ & \text { CIA } \end{aligned}$	$\begin{aligned} & \text { ANCHO } \\ & \text { TYPE } \end{aligned}$				
	24-A	$24 "$	4- +5	\#2 of 12"	5.7	5.3	4.5	$3 / 4{ }^{\prime \prime}$	36	$123 / 4{ }^{\prime \prime}$	1	10	1	Pedestol pole, pedestal	mounted
												87	3	Mast orm assembly. (see	Selection Toble)
	30-A	$30 \times$	8- \#9	\#3 at 6"	11.3	10.3	8.0	$11 / 2^{\prime \prime}$	55	$17 \times$	2	1		Most orm assembly. (see	Selection Toble)
	$36-\mathrm{A}$	36 "	10-\#9	\#3 ot 6"	13.2	12.0	9.4	$13 / 4 "$	55	19"	2	131	5	Most arm ossembly (see	Selection Table) without (uminaire.
	36-B	$36 "$	12	\#3 ot 6"	15.2	13.6	10.4	$2 "$	55	21^{11}	2	190	7	Mast arm assembly. (s Stroin pole toll ler pole with mast arm	$\begin{aligned} & \text { Selection Table) } \\ & 30^{\prime} \& \text { strain } \end{aligned}$
	42-A	$42^{\prime \prime}$	14-\#9	\#3 ot 6 "	17.4		11.9	$21 /{ }^{\prime \prime}$	55	$23 "$	2	271	9		

FOUNDATION SELECTION TABLE FOR STANDARD MAST ARM PLUS ILSN SUPPORT ASSEMBLIES (ft)					Traffic Signal Pole
	FDN 30-A	FDN 36-A	FON 36-B	FDN 42-A	
z max Single arm length	32^{\prime}	48^{\prime}			CTINP
maximum DOUBLE ARM LENGTH COMBINATIONS	$24^{\prime} \times 24^{\prime}$				
	$28^{\prime} \times 28^{\prime}$				
	$32^{\prime} \times 28^{\prime}$	$32^{\prime} \times 32^{\prime}$ $36^{\prime} \times 36^{\prime}$			$\stackrel{\text { ¢ }}{ }$
		$40^{\circ} \times 36{ }^{\prime}$			
		$44^{\prime} \times 28^{\prime}$	$44^{\prime} \times 36^{\prime}$		
z max single arm length		36^{\prime}	44^{\prime}		
MAXIMUM DOUBLE ARM LENGTH COMBINATIONS		$24^{\prime} \times 24^{\prime}$			$\bar{\square}$ -
		$28^{\prime} \times 28^{\prime}$ $32^{\prime} \times 24^{\prime}$	$32^{\prime} \times 32^{\prime}$		可 1
			$36^{\prime} \times 36^{\prime}$		Use average N value overthe tco third of the he tcp third o. Ignore the too \qquad
			$40^{\prime} \times 24^{\prime}$	$40^{\prime} \times 36^{\prime}$	
				$44^{\prime} \times 36^{\prime}$	

NOTES

Anchor bolt design develops the
foundotion coopocity given under
Foundotion Desi in toide oundotion Design Loods.
(2) Foundation Design Loods are the
ol lowoble moments ond sheors ot
the base of the structure.
(3) Foundations may be 1 isted separately
or grouped according to similarity
 4) Field Penetrometrer readings of o depth
of ooppoximately ${ }^{\text {reat }}$, feet may be
used to odjust shaft lengths.
5) If rock is encontered the
5) If rock is encountered, the Dr illed
Shaft shal extene mine imum of two
diameters into solid rock.
(6) Decimal lengths in Design Toble or
to allow interpol ation for other penetrometer volues. Round to nearest
foot for entry into summary Toble.

Anchor bolt \& template sizes						
$\begin{aligned} & \text { BoLT } \\ & \text { DIA } \end{aligned}$	(7) BOLT LENGTH	$\begin{gathered} \text { TOP } \\ \text { THREAD } \end{gathered}$	BOTTOM THREAD	BOLT CIRCLE	R2	R1
3/4"	$1^{\prime}-6$ "	$3 "$	-	$123 / 4{ }^{\text {" }}$	$71 /$	5 5/8"
$11 / 2 "$	3'-4"	$6 "$	$4 "$	17"	10"	$7{ }^{17}$
$13 / 4 "$	3'-10"	$7{ }^{\prime \prime}$	$41 / 2 \mathrm{~L}$	$19 "$	$111 / 4^{\prime \prime}$	$73 / 4{ }^{\prime \prime}$
$2{ }^{\prime \prime}$	$4^{\prime}-3 "$	${ }^{8 \prime \prime}$	$5{ }^{\prime \prime}$	$21 "$	$12 \mathrm{~L} / 2{ }^{\prime \prime}$	81/2"
$21 / 4^{\prime \prime}$	4' -9"	$9{ }^{\text {" }}$	$51 / 2^{\prime \prime}$	$23 "$	$133 / 4{ }^{\prime \prime}$	$91 / 4^{\prime \prime}$

Min dimensions given,
longer bolts are coceptoble.

EXAMPLE:
For 80 mon design wind speed, foundation
Fo-A mon support wo to
another sperm to to 28^{\prime} arm with
2. For 100mph desion wind speed, foundation
$36-$ A con support o single 36 , mast arm.

Top Template $\begin{gathered}\text { Heavy Hex } \\ \text { Nut (Typ) }\end{gathered}$

soil.
steel Templote
with hol les Nition
thon bolt diome
condur

TYPICAL STRAIN POLE
ASSEMBLY

8) Orient anchor bolts ortrogonal ensure that two bolts ar
tension under dead load.

TYPICAL MAST ARM
ASSEMBLY

TOP VIEW

Vertical Bars (see
Desijon Toole for size
Q number).

 of materiol is is firm enough it do so when

ELEVATION concrete is ploced. FOUNDATION DETAILS

GENERAL NOTES:
Desian conforms to 1994 AASHTO Standord
Specifications for Structural Supports for Specifications for structural Supports
Highwoy sionns, Lum
Higarer and Trpatic
signols ond interim revisions thereto.
Reinforcing stee! sholl conform to Item 440 ,
"Reinforcing steel".
concrete sholl be Closs "C".
Threads for anchor bolts and nuts shall be
rolled or cut threads of gun series
 Anchor bolts that are larger than 1 " in diameter
shall conform to "al loy steel or "med ium-strength
 to ASTM A36. Golvanize o minimum of the top end
threod length plus 6 for all onchor bolts unless otherwise noted. Exposed washershord exposed nut
shall be galonized. Al golvonizing sholl be in
sol Templotes ond embedded nuts need not be galvanized.
ubricate and tighten onchor bolts when erect ing the Lubricate and tighten onchor bolts when erecting the
exas Department of Tronsportation

TRAFFIC SIGNAL POLE FOUNDATION

TS-FD-12

(C) TxOOT August 1995			
Revisious	cour sser	${ }^{008}$	
			cs
	0.51	cow	ster

1. Details apply to roadway lighting installations bid or referenced under Item 610, "Roadway Illumination Assemblies."
Provide, furnish, and install all other materials not shown on the plans which may be necessory for complete and prol Provide, furnish, and instoll all other materials not shown on the plans which moy be necessory for complete and proper
construction. Where manufot+urers provide warronties or guarantees os a customary trade proctice, furnish to the Stote
such worronties or guorantees.
2. The locations of poles and fixtures may be shifted by the Engineer to accommodate local conditions. Install or remove poles and luminaires located near overhead electrical lines using established industry and utility safety practices and

Provide new and unused materials. Ensure that all materials and installations comply with the applicable articles of
the Notional Electrical Code (NEC), TxDOT stondards ond specificotions, Notional Electrical Monufacturers Associotion (NEMA), and are listed by Underwriters Laboratories (UL) or a Notionally Recognized Testing Lob (NRTL). NRTLs such as Conodion Standord Association, Intertek Testing Services NA Inc., or FM Approvals LLC can be considered equivalent to

Provide Roadway Illumination Light Fixtures os per TxDOT Departmental Material Specification (DMS) 11010, Item 610,
and os shown on the Moterial Producers List (MPL) for Roodway Illumination ond Electrical Supplies.
Fabricate steel roadway illumination poles in accordance with Roadway Illumination Poles (RIP) standards and Item 610 .
Poles fabricated according to RIP standards do not require shop drowing submittols.
a. Alternate designs to RIP standards or the use of aluminum to fobricate poles will require the submission of shop
drowings electronically. For instructions on submitting shop drowings electronically see "Guide to Electronic Shop Drowing submittal" on the TXDOT web site.
b. Limitations on use of the RIP standard: The RIP standard details were developed for installations in locations less than (i.e. not more than) 25" obove the elevation of the surrounding terrain, in accordance with the "AASHTO standard Specifications for Structural Supports for highwoy sions, Luminaires ond Traffic signals, " 4th Edition
(2001) (AASHTO Design Specifications). For poles to be installed in reaions where the maximum basic wind speed (2001) 'AASHTO Desion Specifications). For poles to be installed in regions where the moximum basic wind speed
exceeds 110 mph or to be mounted more thon 25 ', obove the surrounding terrain, provide poles meeting the following
requirements:

Submittals. Following the electronic shop drawing submittal process (see Guide to Electronio Shop Drawing
Submittol on the TxDOT web site), summit to the Engineer for approval fobrication drowings and colculations Submittol on the TxDOT web site), submit to the Engineer for approval f.
for the poles, sealed by o Texos licensed professional engineer (P.E.).
i. Luminaire Structural support Reauirements. Provide 1 ight poles, arms, ond anchor bolt ossemblies with o 25
year design life to safely resist dead loods, ice loads and the reauired basio wind speeds ot the location of installotion in occordance with the 6th edition (2013) of the AASHTO Design Specificotions. For tronsformer base poles, include transformer base ond connecting hardware in colculations ond shop drawing submittals.
Structuraliy test all tronsformer boses to resist the theoretical plastio moment capocity of the pole. Submit furnished with the shop drawings. Show breakaway base model number, manufacturer's name, ond logo on shop
drowings. Include on manufacturer's shop drawings the ASTM designotions for all materials to be used.
6. For both transformer ond shoe-base type illumination poles, provide ond install double-pole breakowoy fuse holders os
specified by DMS-11040. Breakoway fuse holders are Iisted on the MPL for Roadwoy Illumination and Electrical Supplies under Items 610 \& 620 . Provide 10 amp time delay fuses for breakoway connectors in light poles, or inside the light under Items 610 \& 620. Provide 10 amp time delay fuses for breakoway connectors in light poles, or inside the 1 ight
fixture for underpass Iuminaires. In each pole, connect luminoires to the breakoway connector with continuous strande 12 AWG copper conductors as 1 isted on the MPL. Bond all equipment grounding conductors together ond to the groun

Tighten anchor bolts for shoe base, concrete traffic barrier base, and bridge mount roadway illumination poles, in accordance with Item 449 .
8. Install t-Base with following proedure
a. Anchor Bolt Tightening.

Coat the threads of the anchor bolts with electrically conductive lubricant.
ii. Place the T-base over the anchor bolts. Foundation must be level and flot. The maximum permissible gap
ii. Coot the bear ing surfaces of the nuts ond washers with electrically conductive lubricant. Install (1) $1 / 2{ }^{\prime \prime}$
hold down washer, (1) lock washer, and (1) nut on each onchor bolt. Turn the nuts onto the bolts so that each is hond-t ight ogainst the washer.
iv. Using a torque wrench, tighten each nut to $150 \mathrm{ft-Ib}$. Uniform contact is reauired between the foundation and
the T-bose in the corner regions of the T -bose, ond all corner gaps must be closed ofter opplying tor que. If a gop still exists ofter torquing to $150 \mathrm{ft-lbs}$, continue torauing each bolt incrementally until gop is close or maximum allowable toraue of 250 ft . pound is reached, whichever comes first. If $250 \mathrm{ft-105}$ is not enough + are permissible. Ensure that no high point of contact occurs between the straight sides of the T -base and the Check top of T-base for level. If not level then foundation must be leveled.
b. Top Bolt Procedure Erect pole over T-base with orane. Coot bolts, nuts, woshers, and lock washers with electrically conductive
lubricant.

Install bolts and $1 / 2^{\prime \prime}$ connecting washers from the inside of the T-base, thread up through the pole bose. Install f
"Structural
Bolting.
iii.Tighten each nut to $150 \mathrm{ft}-\mathrm{lb}$. using a toraue wrench
c. Level and Plumb

Ensure pole is plumb and mast orm is perpendicular to the roadway occording to plans to within
degrees. degrees.
9. Construct Iuminaire pole foundations in accordance with Item 416, "Drilled Shaft Foundations," and TxDOT
0. Provide and install underpass luminaires in accordance with Item 610, DMS-11010, and TXDOT standard sheet
RID(3). Typical luminaire size for underpass luminaires is 150 W HPS or 150 W EO LED.
11. Mount Iuminaires on arms level as shown by the luminaire level indicator.
12. Orient Iuminaires perpendicular to the roadway intended to be lit unless otherwise shown on the plans.

TYPICAL WIRING DIAGRAM
LUMINAIRES SERVED AT 480 V ON $240 / 480$ Vol
SERVICE OR LUMINAIRES SERVED AT 240 V FOR

NEAR SIDE LANE CLOSURE SHORT DURATION OR SHORT TERM STATIONARY

FAR SIDE RIGHT LANE CLOSURE short duration or short term stationary

OPERATIONS IN THE INTERSECTION

LEGEND			
∞	Type 3 Barricade	－	Channelizing Devices
D吅	Heavy Work Vehicle	$\boldsymbol{\square}$	Truck Mounted Attenuotor（TMA）
$\hat{⿴ 囗 ⿻}$	Trailer Mounted Flashing Arrow Boord	$\widehat{M p}$	Portable Chongeable Messoge Sign（pCMs）
－	Sign	\bigcirc	Traffic Flow
\wedge	Flog	\square	Flogger

WORKERS IN BUCKET TRUCKS SHALL NO WORK ABOVE OPEN LANES OF TRAFFIC

FAR SIDE LEFT LANE CLOSURE SHORT DURATION OR SHORT TERM STATIONARY

GENERAL NOTES
The minimum size channelizing device is the $28 "$ cone． 42 ＂Two－plece
cones，drums，vertical ponels or borricodes will be required when cones，drums，vertical panels or borricodes
the device must be left unottended ot night．
2．obstructions or hazards of the work area shall be clearly marked
3．Floggers ond Flagger Symbol（CW20－7）signs may be required according
to field conditions．
4．Venicles parked in roadway shall be equipped with of least two
high intensity rotating，
floshing，oscilloting or strobe type
5．High level worning devices（flog trees）moy be used ot corners of
the venicle．
6．When work oper otions are performed on existing signols，the signols moy be ploced in flashing red mode when approved by the engineer－
If existing signals do no have power，All－Woy Stop（R1－1 ond R1－3P）
si
．For Short－Term Stationary work the buffer space＂B＂from the above For Short－Term Stationary work the buffer space＂B＂from the obo
toble should be used if field conditions permi．For Short Durat
（less thon 1 hour）ony buffer space provided will enhonce the （less than 1 hour）any buffer space provided will enhonce the
sofety of the setup．
 option，the orrow board moy be ploced ot the end of the toper in
the colosed lone if space is not avail oble ot the beginning of the toper．
 chonnel izing devic．
opposing troffic．

SHEET 1 OF 2

TRAFFIC SIGNAL WORK TYPICAL DETAILS

	wzots－13．dgn				
（1）Tx00	April 1992	cont s		${ }^{0}$	Hromay
		${ }^{0.157}$			

EROSION CONTROL LOGS SHALL BE INSTALLED
IN ACCORDANCE WITH MANFACTUEER'S RECOMMENDATIONS, OR AS DRECTED BY EGINEER.

- LENGTHS OF EROSION CONTROL LOGS ShaLl RECOMMENDATIONS AND AS REOUIRED FOR THE PURPOSE INTENDED. UNLESS OTHERWISE DRECTED, USE
BIODEGRADABLE OR PHOTODEGRADAB BIODEGRADABLE OR PHOTODEGRADABLE
CONTANMENT MESH ONLY WHERE LOG WIL REMAN IN PLACE AS PART OF A VEGETATIV SYSTEM. FOR TEMPORARY INSTALLATION,
USE RECYCLABLE CONTANMENT MESH. USE RECYCLABEE CONTANMENT MESH.
FILL LOOS WITH SUFIIIENT FILTER MATERIAL
TO ACHEVE THE MNIUM COMPCTVE DIMAETER TO ACHEVE THE MINMUM COMPACTED DIAMETE
SPECIFED IN THE PLANS WITHOUT EXCESIIVE DEFORMATION.
STAKES SHALL BE $2^{\prime \prime} \times 2^{\prime \prime}$ WOOD OR
"3 Rebar 2'-4' Long Embedded such that
2" PROTRUOES ABOVE LOG, OR AS DRECTED
THE ENGINEER.

6. do not place stakes through contanment
compost cradle material is incidental \&
7. WIL NOT BE PAD FOR SEPARATELY. SANDBACS USED AS ANCHORS SHALL BE PLACED

SALNOAGS USED AS ANCHORS SHALL BE PLACED
ON TOP OF LOGS \& SHALL BE OF SUFFIIENT SIZE TO HOLD LOGS IN PLACE.
-. TURN THE ENDS OF EACH ROW OF LOGS UPSLO
LOG.
FOR heAVY RUNOFF EVENTS, ADDITIONAL
10. FOR HEAVY RUNOFF EVENTS, ADDITIONAL UPSTREAM STAKES MAY BE NECESSARY TO KEEP _OG FROM FOLDING IN ON ITSELF.

SECTION C-O
EROSION CONTROL LOG AT EDGE OF RIGHT-OF-WAY

DIAMETER MEASUREMENTS OF EROSION CONTROL LOGS SPECIFIED IN PLANS

```
An erosion controlog, sediment trop may be used to filter
Log Trops: The droinge.areo tor a sediment trop should not exceed
```



```
    1. Within drainoge ditcenes spoced os needed or min. 500' on center
    1. W.immediotely preceding spoceced is neededed or or min inlets
    䘖. Just before the drainge enters o woter course
    5. Just before the drainoge leoves the construction
The logs should be cleoned when the sediment hos accumuled to 
depth of 1/2 the log diamete.
Cleoning and removal of occumulated sediment deposits is incidental ond

Control
```

$$
1
$$

1. Whine droingese ditches spaced os needed or min
3 Immediotely preceding ditch inlets or or droin inlets
2. Just before the drainage enters o water course
3. ust before the droinge leoves the right of woy
4. Ust before the draine
5. Just before the drainage leoves the construction
limits where droinoge flows owyy from the project.
The logs should be cleoned when the sediment has accumulated to a
depth of $1 / 2$ the log diometer. Cleaning and removal of occuly.
will not be poid for separately.
```
SEDIMENT BASIN \& TRAP USAGE GUIDELINES


REBAR STAKE DETAIL
\[
\mathrm{CL}-\mathrm{BOC}
\] AS NEEDED TO CENTER) MAX,
OR AS
ERURE LOG
-CL-GI EROSION CONTROL LOG AT CURB \& GRATE INLET
-CL-SST- EROSION CONTROL LOGS ON SLOPES
STAKE AND TRENCHING ANCHORING
-CL-SSL- EROSION CONTROL LOGS ON SLOPES
STAKE AND LASHING ANCHORING
-CL-DI-EROSION CONTROL LOG AT DROP INLET
- CL-CI-EROSION CONTROL LOG AT CURB INLET
-CL-GI EROSION CONTROL LOG AT CURB \& GRATE INLET


PLAN VIEW


SECTION A-A
EROSION CONTROL LOG DAM


LEGEND
-CL-D-EROSION CONTROL LOG DAI
-CL-BOC-EROSION CONTROL LOG AT BACK OF CURB
-CL-ROW-EROSION CONTROL LOG AT EDGE OF RIGHT-OF-WAY

Cl-G1 EROSIN CONROL LOG AT


















```


[^0]: (Company/Contractor)

[^1]: ${ }^{1}$ http://geohazards.usgs.gov/designmaps/us/application.php

[^2]: ${ }^{\left({ }^{*}\right)}$ End bearing is limited to 2 tsf for drilled shaft diameter sizes between 24 and 48 inches.

[^3]: ${ }^{2}$ For Principal thoroughfares in excess of 30,000 VPD.

[^4]: Copyright 2015 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, or its contents, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document
 is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document as a complement to or as an element of a geotechnical-engineering report. Any other firm, individual, or other entity that so uses this document without being a GBA member could be commiting negligent or intentional (fraudulent) misrepresentation.

